CHAPTER 1

SIGNALS AND SYSTEMS

System
composite makeup of
components to perform a
particular function.

Signal
a set of data representing
some underlying
meaning.

Home Theater (HT) is founded in two different but surprisingly similar
technical areas—audio and video (AV). Both of these technologies have a
common underlying technical basis and because these technical concepts
are common to both areas, | have placed this material first. Therefore, | am
going to start this text with the toughest material. | do this not because I
enjoy torturing the reader from the outset, but because this material is fun-
damental and common to all the technology that makes up HT. Both audio
and video are systems that manipulate signals. To be sure, the signals and
systems in each of these areas are different, but the underlying concepts for
dealing with them are virtually identical.

This means that | can cover the fundamentals of the two subjects with a
single technical discussion—a tremendous savings of effort. The unfortu-
nate part is that | must discuss these concepts generically, without specific
reference to their applications since they can be applied in different situa-
tions in different ways. Admittedly, this creates a double-edged sword of
conciseness versus elucidation. | hope that the reader will make the effort to
follow the discussions since doing so will pay big dividends in later chap-
ters when more specific applications are discussed.
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Signals and Systems

Value
a numeric attribute of a
physical quantity
denoting its amount.

1.1 Signals

Signals are present all around us. A signal is any variation in a value (a
numeric attribute of some physical quantity that denotes its amount, such as
volts or pressure) over time which contains useful information. Voice is a
signal, as is a doorbell, as is video, etc. Noise is not generally thought of as
containing information, although there can be exceptions (such as when
your car makes a “noise” that signals something is wrong). Thus, there are
basically two classifications of time variations—signals and noise. One
contains information—usually the desired information—and the other
does not. Note that what constitutes a signal and what constitutes noise
does not have an absolute distinction—one person’s signal can be another’s
noise.

The concept of a signal is useful since it allows us to have a discussion
of a data stream without the need to reference the underlying physical sys-
tem that carries this data stream. For instance, we can talk about a signal
and its characteristics without having to reference the actual physical quan-
tity that we are talking about, such as the pressure or volts, etc. or even the
intended end product, i.e. sound or video. We can let these signals flow
from one system to the next with little concern about the details of the
underlying physical system they are currently in. For example, when some-
one is talking on the phone, the acoustic voice signal is converted into an
electrical current signal which travels along cables. This is often done as an
optical digital signal. The signal then arrives at its destination ready to be
converted back along an identical but reverse process into a sound signal at
the receiver—human hearing. At every location the “signal” should be the
same, but it will take on different physical forms (electricity, light, sound,
even analog or digital) at every stage.

We hope, or assume, that the signal content remains constant along the
entire path, but it never does. | will talk in later chapters about how a signal
can be changed as it progresses along a transmission path, and | will show
how the modifications to these signals are created and defined. How these
modifications can change the human perception of these signals and the
important question of when these modifications actually cause a change in
the perception or not will also be discussed. Since all signals are changed
by the systems that propagate them, knowing what changes affect human
perception and what changes do not is a crucial distinction. | will attempt to
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Signals

Scale
applying a number to the
data value.

Logarithm
a mathematical
relationship wherein
equal percentage
changes have equal
numbers.

define those signal changes which have been shown to be the principal con-
tributors to deviations in perception. However, | will not be able to discuss
all of the contributors down to the most inconsequential ones. The result of
this limitation will be that I may not discuss aspects of systems and signals
which are felt by the reader to be important. That does not mean that | don’t
agree to their existence or perhaps their importance, only that I may not
agree with their priority.

lla Signal Level

Even though a signal can exist without a reference to a specific physical
quantity, we will need a way to define its value at any given moment in
time, i.e. a way to scale it. Scaling is straightforward if we simply use the
definition of the physical quantity carrying the signal, voltage in Volts or
sound pressure in Pascals for instance, but it will turn out that another scal-
ing method is far more convenient for AV signals. Since the concept of a
signal usually implies that it has information content, it also implies a
human perceptual interpretation. When human perception is involved a dif-
ferent scaling definition is usually desirable.

The reason for this different scaling is because human perception mech-
anisms for signals in nature, light, sound, and even touch or smell to a
lesser extent, tend to respond equally to ratios of excitation rather than the
actual level of excitation. For example, subjects will judge each doubling of
the sound pressure as being a perceptually equal increment. This means that
going from 1 unit to 2 units is perceived as the same perceptual change as
going from 10 units to 20 units, even though the actual physical increments
are one and ten respectively. There are biological reasons why humans react
in this way, but that is a topic beyond the scope of my intended subject.
Relationships which have this characteristic are defined mathematically as
logarithmic. A more detailed description of the logarithm can be found in
Appendix 11 and this appendix also discusses some important characteris-
tics of the dB scale, which | am going to introduce next.

A method for scaling a logarithmic relationship, which has found
almost universal application, is called the deci-Bel (dB, a tenth of a Bel,
after Alexander Graham Bell). The dB is the most common unit of measure
in both audio and video. The dB scale gives a signal scaling which is more
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Signals and Systems

Frequency
the number of cycle, per
second, that a waveform
exhibits.

Pitch
the perceived tone of a
sine waveform.

Amplitude
the value of a waveform
at some point in time.

Hertz
the unit of frequency—
one cycle per second.
Sine
a convenient
trigonometric function for
defining the simplest of
waveforms
(See App. IlI).

Figure 1-1.
Three sine waves of dif-
ferent amplitude, phase

and frequency.

in line with human perception. It is also a scaling method which has a num-
ber of useful features, most of which are discussed in the appendix.

1.1b The Time-Frequency Relationship.

One of the most important concepts in any discussion of signals is the
relationship between the time and frequency domains. (In video, it is the
space and frequency domains that we are interested in, but I think that the
time domain is more familiar so | will focus on that one for the moment.)
The time domain is something that we all have a basic understanding of
even though it is hard to actually define. We typically have a good concep-
tual understanding of frequency because our daily lives contain all kinds of
sounds and we can readily distinguish a high frequency sound from a low
frequency one. The problem with this description is that what we perceive
as frequency is actually called pitch, which is different from frequency. |
don’t want to get too deep into this difference other than to note that our
common daily experience with “frequency” is really a perceptual experi-
ence with pitch. Once again it is basically a logarithmic relationship that
connects the two.

Frequency is defined as the number of repetitions that the signal level
undergoes in a given period of time. Figure 1-1 shows three sine waves of
different frequencies and amplitude in the time domain, that is, time as the
horizontal (x) axis. These waves have frequencies of 1 cycle per second or
Hz (Hertz after the German physicist Henrich Hertz), 1.5Hz and 4 Hz. If
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Frequency domain
the technique of studying
signals and systems by
looking at their frequency
characteristics.

Figure 1-2.
Frequency view of the
three waves shown in

Figure 1

Magnitude
the peak value attained
by a sine wave
independent of when it
occurs.

RMS
the square root of the
mean (or average) value
of a waveform.

the time axis were in milliseconds (ms, 1/1000 of a second) instead of sec-
onds then these waves would be 1000Hz (or 1kHz), 1.5kHz and 4kHz
respectively. These higher frequencies are more common to us than the
very low ones, so | prefer to show time in milliseconds since this time scale
lends itself better to a more common every day experience.

Consider an alternate way of showing the data in Figure 1-1. Let me call
this new way of looking at the data the frequency domain. In Figure 1-1,
each of these waveforms can be described by an amplitude and a
frequency—two simple numbers. If I now plot these numbers on a new
graph with amplitude as one axis and frequency as another, then I will get a
plot as shown in Figure 1-2—which is called the frequency domain. Note
that time is no longer directly apparent in the frequency domain just as fre-
quency is not directly apparent in Figure 1-1. The two plots do, however,
contain exactly the same information.
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In the frequency domain, each waveform is located at its specific fre-
quency and is drawn as a line whose height indicates the waves amplitude.
The vertical axis is labeled as the magnitude, which is the peak value of the
waveform independent of the point in time at which this occurs. The mag-
nitude and the amplitude are slightly different things where the term ampli-
tude is usually used to refer to the value of the waveform at any given time
in the time domain and the term magnitude is used to refer to the wave-
forms maximum value. Sometimes, we might see magnitudes given as
RMS values (Root Mean Squared). RMS is basically an effective value, a
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Signals and Systems

Phase
the starting location of a
sine wave relative to its
zero crossing or another
sine wave.

Complex magnitude
the magnitude and
phase of a waveform
express as a two part—
complex—number.

Complex waveforms
waveforms composed of
a multitude of sine
waves of different
frequencies.

sort of average value for the waveform. The term magnitude is usually used
to refer to frequency domain levels.

In Figure 1-2, the 1.5kHz wave does not start at zero as the other two
do, this wave has been shifted along the time axis. The starting point of the
waveform is called its phase, completely analogous to the “phase of the
moon”. The time delay that causes a given phase depends on the frequency
of the waveform. The important thing to note is that to completely describe
the time domain data in the frequency domain, | also need to know its
phase. Thus in the frequency domain the waveform is represented by its
frequency and its magnitude and phase or equivalently its complex magni-
tude. It is complex because the magnitude can be described by two num-
bers known as the real and imaginary parts of a complex number.

It’s not really too important to note this “complex” aspect of the magni-
tude, but it is described in more detail in Appendix Il - Complex numbers.
The reason that | even acknowledge it is because mathematically the calcu-
lations are all done in complex arithmetic. Fortunately, | will almost never
need to resort to this complication. | will plot magnitudes as a single real
number and sometimes show the phase—the phase being of lessor (but not
insignificant) importance. If it is desirable to show the phase, then it is usu-
ally done as a second plot or a second line on the same plot but with a dif-
ferent scaling. Note that the magnitudes as shown in Figure 1-2 are blind to
the waveforms starting point, i.e. the phase.

The relationship between the time and frequency aspects of a sine wave
can be extended to complex waveforms. Consider the waveform shown in
the top half of Figure 1-3. This waveform might be exhibited, for example,
by a musical instrument since it is periodic. With a period of 1 ms it would
have a base frequency of 1000Hz, or 1kHz. The period of a repetitive sig-
nal is the length of time that passes before the signal exactly repeats itself.
By using a mathematical technique called the Fourier Series, | can decom-
pose the complex upper waveform into a set of pure sine waves. | have
shown this decomposition in the bottom half of the figure. This series—it
is called a series because it is the sum of a series of independent waves—is
named after the French mathematician “Fourier” who first studied its prop-
erties. In the case shown here, all of the sine wave are related by integral
frequencies. The longest waveform in the series is called the fundamental
and the higher frequency (shorter) ones are called harmonics. The integer

10
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relationship is important because it means that only waves which are n
times the fundamental, where n is an integer, are allowed in this series. This
requirement is a direct result of the fact that the Fourier Series repeats itself,
Period it is always periodic. Its values continuously repeat in any time interval that
the time for a periodic is outside of the time period of the fundamental—1.0 ms in Figure 1-3.
waveform to repeatitself. -~ Any signal represented by a Fourier Series must repeat itself on exactly this
period and so only waves which have frequencies that are integer multiples

of the lowest frequency and, hence, synchronous to it are allowed.
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Signals and Systems

Window
the limited time frame in
which we look at a
waveform.

Figure 1-3 also has a frequency domain representation as shown in
Figure 1-4. In this figure, | have plotted the components by their order (the
integer of their multiple) which is of course proportional to their frequency.
There is no need to plot the phase of the components since it is obvious that
they are all in phase. | have shown the first to the fifth order for the Fourier
Series decomposition of a square wave. Figure 1-3 only shows the first
three components of this series, but it should be clear that adding more
terms would lead to a more squared off waveform.

The reader should take note of the close relationship between the discus-
sion of Figure 1-1 and Figure 1-2 and the Fourier Series component repre-
sentation shown in Figure 1-3 and Figure 1-4. They are basically the same
thing. The Fourier Series shows us how to map signals from the time
domain to the frequency domain in a concise mathematical framework.

The Fourier Series is ideal for decomposing harmonic waveforms as
would appear from a single instrument playing a continuous periodic tone,
but this is hardly the most general form of a signal. The world is composed
of harmonic, in-harmonic and transient signals as well as music, which is
made up of a multitude of individual instruments with all of these signals
being present simultaneously. In-harmonic signals come from instruments
like cymbals and drums which have waveforms which do not have an inte-
gral relationship between their components and almost all musical instru-
ments that have both transient and steady state signal components. In order
to be able to decompose a completely general (real life) waveform, I will
need to extend the Fourier Series concept to a close relative which allows
signals which are not necessarily periodic.

Consider an impulse waveform as | have shown in Figure 1-5. For now,
let’s simply ignore what this waveform looks like outside of the “window”
that we are currently looking at (0—.3s) and go ahead and find its Fourier
series components. The result of this exercise is shown in the top of
Figure 1-6. Note that the components are still all harmonics, but of the low-
est frequency component, defined by the window, at 4Hz The principle
waveform period is seen to be at 24 Hz (the peak value) which corresponds
to a period of about .04 s.

Consider the time base of Figure 1-5, the length of time shown in the
plot, the window, which I will also assume is the length of time over which
| take the data. In this example it is .3s. If | let the time base become much

12
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Figure 1-5.
A non steady state
signal—an impulse.

Figure 1-6.
The Fourier Series
terms in the expansion
of Figure 1-5 for two

different time windows.
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Signals and Systems

Fourier Transform
the continuous frequency
version of the Fourier
series where the time
window becomes very
long.

Spectrum
the continuous frequency
representation of a
signal.

larger, say 8 times longer or about 2.5s, then | will get the results shown on
the bottom of Figure 1-6. Both curves are plotted with discrete lines to rep-
resent the frequency components, but in the lower plot these lines have
become very dense. The lines are still all harmonics of the lowest period,
but this period has become much longer and the lowest frequency is now
4/8=.5Hz. The peak value is still at 24Hz however. The results have not
changed, only the resolution of those results has increased.

If | were to let the period in Figure 1-5 go to infinity, then the discreet
line structure of the representations in the above figures would become infi-
nitely dense and would create what is called a continuum—a continuous
curve not discreet lines. In this later case we usually drop the filled-in area
under the curve and draw a line from point to point. The continuous version
of the Fourier Series—the one where the time base goes to infinity—is
called the Fourier Transform. It is called a transform since it transforms
data from one continuous domain—time—into another continuous
domain—frequency. For our immediate purposes, we will limit our discus-
sions to transformations between the time domain and the frequency
domain although the Fourier Transform (as | will show later when | talk
about video) has a much broader applicability and holds for transformations
between many different kinds of variables (domains) and also in multiple
dimensions such as space.

Applying the Fourier Transform to a time domain signal results in its
frequency spectrum—nbasically a frequency domain plot like that shown in
Figure 1-6. A spectrum is defined by two values at every frequency. The
two values can be given in two equivalent sets, as real and imaginary val-
ues (a complex number) or the far more common terms, magnitude and
phase. | discuss these quantities and the relationship between them in
Appendix 111 - Complex numbers.

In audio it is common to view the spectrum in dB with a logarithmic fre-
quency scale (making it a log-log plot). This plotting standard is useful
because the picture created closely represents what we would actually hear
(perceive)—the pitch being approximately logarithmic and the level scal-
ing in dB. Appendix Il - Logarithms shows some of the important relation-
ships that apply in the log-log domain. Exponential relationships appear as
simple straight lines in this type of plot which can be a significant simplifi-
cation in visualization and calculations.

14
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Figure 1-7.
The dB-log spectrum of
impulsive signal in
Figure 1-5

Impulse
a very large amplitude
but very short time
duration signal where the
total area is one.

Impulse response
the time domain signal
that would be seen at the
output of a system if
there was an impulse at
the input.

FFT
an efficient computer
algorithm for performing
the Fourier Transform.
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Figure 1-7 shows the same data as shown in Figure 1-6 but using the
more conventional dB-log scale. Figure 1-7 is exactly the kind of graph that
I will be showing often in this text—the spectrum of a signal (the signal in
this example being shown in Figure 1-5). In the next section, | will describe
how if this spectrum is found at the output of a system when the input was a
unit impulse, then it is known as the impulse response or equivalently the
frequency response. The frequency response of a system being, perhaps, the
single most important characteristic of an audio component.

The examples that | have shown in this chapter were all generated on a
computer using what is know as the Fast Fourier Transform or FFT. The
FFT is a computer algorithm that aims to numerically approximate the Fou-
rier Transform—a mathematical construct that | described earlier with an
unrealistic time window of infinity. If properly implemented, the FFT will
yield a close approximation of the actual Fourier Transform that we desire.
Usually, any errors that can occur with the use of the FFT approximation
are benign, but sometimes these errors can actually obscure what we are
trying to see. In Appendix IV - Acoustic Measurements, | discuss some of
these issues in more detail. For our purposes here, however, we can think of
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System
a fundamental assembly
block which processes
input signals to create
output signals.

Time invariant
a system whose
properties do not vary in
time.

Linear
a system whose input/
output transfer
characteristic is a straight
line.

the FFT as simply being the “real world” implementation of the Fourier
Transform.

At this point | would like to review the basic principles discussed in this
section because they are key to the reader’s understanding of almost every-
thing that | will do in this text. These principles are described below.

« Atime domain signal has a completely equivalent representation in
the frequency domain.

» The rules for the moving between the two descriptions in the time
and frequency domains come directly from the requirements of the
Fourier Series and the Fourier Transform.

e The FFT is a computer algorithm that attempts to implement the
Fourier Transform numerically. It creates a good approximation of
the true spectrum, but not without some error.

1.2 Systems

Now that we know how to decompose a complex signal (one that is
composed of multiple tones) into a composite of simpler single frequency
waves and how to scale these signals in a meaningful way, we can move on
to a discussion of systems. A system is a symbolic block which receives
data as an input signal and acts on that data to produce an output signal. It
is important to limit our discussion to several restricted sub-classifications
of systems. The first is that the system under consideration is time
invariant— that is the system does not change over time, and the second
assumption is that the system is linear.

The time invariant requirement is self-evident and simply means that the
properties of the system do not change with time, or at least not signifi-
cantly during the time frame that we are looking at them. If the system were
not time invariant, then any statement made about it would be invalid only
moments later. Linear means that when a complex signal passes through a
system, each component in its spectrum is acted on individually, i.e. that the
individual components do not interact with one another. This non-interact-
ing characteristic is also called superposition, the principal that two signals
can be superimposed on one another without affecting each other. For

16
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Systems

Dynamic range
the range of signal levels
over which the system
can operate effectively.

Convolution
a mathematical
technique for calculating
an output signal from an
input signal in the time
domain.

instance, when the 100Hz component of an input signal passes through a
linear system, its output level depends only on the input level of the 100Hz
component. It is not affected by any other components of the input signal,
i.e. 200Hz, 101Hz, etc. This is an extremely important restriction, for with-
out linearity, virtually all of the system theories that I use in this text fail to
be valid or applicable.

The problem is that no system can be linear for any arbitrary signal level
at its input or output. A system is said to have a dynamic range—i.e. the
limits on the range of signal levels over which it is linear. The lower limit
of this range is almost always the noise floor, which in some systems (like
digital ones) is often a linearity issue. On the other end, at some signal level
the system will saturate and cease to be able to correctly output signals or
accept larger input signals. Good audio systems have a dynamic range of
90dB or more (or a ratio of highest level to lowest level of about 30,000).
Achieving this in electronics is relatively straightforward, but, as we will
see, for acoustic signals in real rooms this is a major challenge. Despite the
inevitability of all systems becoming nonlinear (not linear), it is convenient
to assume linearity and move on from there. Later, | will step back and take
a deeper look at the implications of the nonlinearity in typical audio system
components. Linearity also comes up in the context of video signals, but it
does not play as central a role in video as it does in audio.

What one usually wants to know about a system is how it acts on an
input signal. This can be done in the time domain, but believe me, if math
intimidates you, you wouldn’t want to do it this way. The process involves
a mathematical technique known as convolution, which is all I am going to
say about it. Fortunately analyzing a system in the frequency domain, espe-
cially in dB, is relatively straightforward.

If we assume that a system is linear, then individual sine wave compo-
nents in the input spectrum can be treated independent of each other. This
allows a system’s response to a complex waveform to be determined by
simply evaluating the response of each of the individual input components
exclusive of any of the other components. The components are then recom-
bined at the output to form the output signal. This feature of a linear system
is the principal motivation for moving into the frequency domain since no
such simplification occurs in the time domain.
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Gain
the ratio of the signal
level seen at the output
and the input.

Transfer function
the gain and phase of a
system versus
frequency.

White noise
a random signal with a
flat spectrum.

Pink Noise
a random signal with a
spectrum that falls at
3dB per octave.

Each input component is affected by the gain and phase of the system at
that frequency. The gain is the ratio of the magnitude of the output signal to
the input signal and the phase is the difference in the phase of the signal at
the output relative to the phase at the input. In dB terms the gain is the dif-
ference, in dB between the input and the output (because division of two
numbers is the same as the difference in their log values see Appendix Il -
Logarithms)

A plot of the gain and phase factor for all frequencies (of interest) is
called a transfer function, T(f) which is also called the frequency response
of the system. The transfer function is defined as the ratio of a systems out-
put spectrum B(f) to its input spectrum A(f) as

B(f)
T(f)= G
If, in this equation the input signal were to contain all frequencies (of inter-
est) at a unit amplitude, i.e. A(f)=1 then T(f)=B(f)—i.e. the transfer
function T(f) would simply be the spectrum seen at the output, B(f). For
example, if Figure 1-7 was the spectrum seen at the output of a system
when the system had a flat spectrum A(f)=1 at its input, then this curve
would be a plot of the systems transfer function—its frequency response. It
is a classic example of a low pass filter with unity gain at low frequencies.

From the above example we can see that it would be useful to have at
our disposal signals which simultaneously contain all frequencies, because
placing these signals at the input to a system yields a spectrum at its output
that is its frequency response. There are actually several signals with this
feature. | have shown two of them in Figure 1-8. It has always amazed me
that white noise (random noise with a flat spectrum) and a unit impulse
have exactly the same flat magnitude spectrum. The only difference in
these two signals is the phase, which is random for the white noise and a
straight line for the impulse. This occurrence is a classic example of why
we should always consider the phase, because looking only at the amplitude
spectrum these two dramatically different signals would be indistinguish-
able. The term white noise comes from white light, which contains the full
spectrum of colors, equally represented. White noise contains the full spec-
trum of sound of uniform amplitude. Pink noise has a slight emphasis on
the low frequencies—the color red—hence the color pink.

18
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Figure 1-8.
Two different signals
with identical ampli-
tude spectrums.
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A third signal with a nearly flat spectrum is a swept sine wave. The
details of using swept sine waves is too complex to get into here, but they
are one of the most common and useful of all of the measurement signals
and techniques.

Figure 1-8 shows an important characteristic of noise versus an impulse:
the instantaneous level of the impulse is very high since all of the energy is
located at a single point in time while the noise spreads the energy uni-

19
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Power spectrum
the frequency distribution
of the power—no phase
consideration.

formly across time. The impulse has a very large level for a very short
period of time while the level of the noise is low for a long period of time.
Both signals have the same total energy and power spectrum (the spectrum
of the signals independent of its phase), but the peak value of the impulse is
about fifty times greater than the noise. If | send either of these two signals
through a linear time invariant system, the output spectrum will be the fre-
guency response of that system. If the system is nonlinear, then it will react
quite differently to these two signals which is why the linearity assumption
is so important.

The response of a system to an impulse signal is logically called its
impulse response. The impulse response, in the frequency domain, is the
system response to all frequencies, which is its transfer function. Thus, the
impulse response completely defines the linear operation of the system. If
we know the impulse response of a system then we can calculate its effect
on any signal that we feed this system. Interestingly, using the response to
the white noise signal can also give us the impulse response, although not
directly. Since the noise is random we need to do a statistical correlation of
the output to the input and to get a good estimate of the spectrum, we need
to take many averages. Characteristics which are not true of the impulse.
The impulse, however, is likely to overload the system if not handled prop-
erly. As | mentioned, there is also the simple swept sine wave technique
which can also give us the frequency response of a system. In practice, each
of these methods has pros and cons as actual test protocols. The thing to
remember is that if one wants to describe a system, any system, then the
most important characteristic to consider is its impulse response—
regardless of what signal is actually used to obtain this response. And, if
done correctly, they should all yield exactly the same answer.

1.2.a Filters

Filters are one of the more common types of system manipulations that
occur. This subject in its entirety is enormous and | will only touch on some
of the basics.

Generally, systems do not pass all frequencies equally, whether desir-
able or not. Often they have a low frequency limit of usefulness (they don’t
always pass DC signals) and always have some high frequency limit. Sys-
tems can also be made to intentionally pass specific sets of frequencies and
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Filter
a system which passes
some signal frequencies
while blocking others.

Order
the order of a filter
denotes the steepness of
its slopes.

Cutoff frequency
the frequency where a
filters response has
dropped to half power, or
-3 dB.

Filter Q
the shape of the filter
near its cutoff frequency.

to reject others. Systems with these characteristics are called filters. Filters
come in many shapes and sizes which can take many descriptors (parame-
ters) to describe.

The first characteristic of importance to a filter is its type. A filter that
passes only high frequencies is called a high pass filter, one that passes low
frequencies a low pass filter and one that blocks both high and low frequen-
cies is called a bandpass filter. There is also a band reject filter which
passes both highs and lows but cuts out certain frequencies in the middle. It
should be apparent that only high pass and low pass filters are unique—
bandpass filters are made up of cascaded high and low pass filters while
band reject filters are made up of parallel high and low pass filters. In a
bandpass filter the low pass filter is set higher than the high pass filter and
in a band reject, the opposite is true.

The next most important characteristic of a filter is its order. The sim-
plest filter—first order—can be described simply by its cutoff frequency,
the frequency where the response is down by 3dB, or one half power.
Higher order filters have sharper slopes in their cutoff region. The order of
a filter is determined by the number of simple filter stages in its makeup.
Each simple filter stage achieves a 6dB/octave slope which can be either
positive or negative depending on the filter type. Equivalently, it has either
an f or 1/f slope in the linear (non-dB) domain. This can be understood by
recalling that the slope of a line in a log-log plot (see Appendix Il - Loga-
rithms) is the same as the power of its variable. Since sequential filters (sys-
tems) add their responses in the dB domain (multiplication in the linear
domain) the filter slope increases by 6dB/octave (or a power of f) for each
filter section. Thus a three section cascaded low pass filter (order 3) would
have a cutoff slope of —18dB/octave (or 1/f 3).

Two stage (order two) filters are described by a well-known set of
descriptors; cutoff and Q, both of which are defined in the frequency
domain. Cutoff specifies the location of the filter’s slope change form its
passhband to its stopband and Q defines the shape of this transition. Higher
order filters are often referred to by names, like Bessel or Butterworth or
Linkwitz-Riley since these higher order filters would otherwise take too
many parameters to describe. | would like to point out, however, that
“named” filters are nothing more than specific cases of the general filter
form, which is actually much more flexible. These named filters have usu-
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Figure 1-9.
Filter function with
various orders and

shapes.
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ally been developed with a particular goal in mind when their unique set of
parameters is determined. They may have the minimum delay or be maxi-
mally flat, but otherwise there is nothing magical about them.

Some typical examples of filters are shown in Figure 1-9. These filters
all have the same mathematical cutoff frequency (60Hz) which shows that
the higher order high Q filters do not actually have the —3dB point at their
theoretical cutoff, although if Q =.7 then the cutoff will be at —3dB. Band-
pass filters are defined by the sum of the high and low pass orders and are
centered on the cutoff frequency with a bandwidth defined by their two
—3dB points (about 60Hz in the above example).

1.2.b Amplifiers

Probably the most common system that we encounter after the filter is
the simple amplifier. There is an enormous mystique about amplifiers,
types (tube or solid state), class, etc. | think that there is a lot of evidence
that amplifiers can sound different, but there is also a lot of evidence to say
that any good amplifier is certainly adequate.
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As a system there are usually four parameters to consider, which place
the limits on its capabilities two different dimensions. The first dimension
is frequency and the limits are its upper and lower —3dB response points.
As | said, no system can have an infinite bandwidth and so one needs to
know what these frequency limits are. For most high quality audio amps
these values are virtually always sufficient, say 20Hz —20 kHz, or more.

The other two parameters frame the upper and lower signal levels that
can be utilized in this system component—the dynamic range. The upper
level is the most commonly referenced one and is usually expressed in
Watts, which unfortunately, is not a very useful number. What we really
want to know is at what voltage the amplifier will clip the output signal or
sound objectionable. The clipping voltage is usually fixed, while the Watt-
age capability depends heavily on the speaker’s impedance, which is
complex—literally. Always remember that clipping is a significant sound
quality problem. One should never allow an amp to clip in practice for any
signal as this will usually result in poor sound quality.

The final parameter is, | believe, the most important and that is the noise
floor. One has to be careful here since by noise floor | mean two different
phenomena. The first is the actual random (thermal) noise that appears at
the output which is usually specified as a ratio of the maximum signal level
to the noise level as a dB number. But, there is a second criteria, which is
far more difficult to determine, and that is how well the amp handles very
small signals. These small signals may be above the noise floor, but still
small enough that they are affected by zero crossing errors. This type of
problem can usually be seen as a rising distortion value for small signal lev-
els. Reject any amplifier with a rising distortion for small signals as these
types of distortion can be shown to be highly objectionable.

Simply put, the amplifier is, in my opinion, not the place to spend an
inordinate amount of money. Any well designed amplifier will relegate this
piece of equipment to the status of “not the weakest link”. For example,
cutting the expenditure on speakers to buy expensive amplifiers is just plain
foolish. You’ll only end up with a lot more power to drive your speakers
into even more distortion. If you have lots of money and love the looks of a
cool amp (and let’s face it, this is one of their biggest appeals) then go right
ahead. But please don’t waste money on an amp if that forces you to cut
costs somewhere else.
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Spatial frequency
a 2D concept where the
light variations in space
are analyzed as a
frequency distribution.

Figure 1-10.
A spatial frequency of 3
in the x direction, there
is no y variation.

Wavenumber
the number of
wavelengths in a given
length.

1.3 Video Signals and Systems

Video signals and the systems that process these signals are completely
different than audio signal and yet they are amazingly similar. The first
obvious difference is that a video image is a two dimension signal. How-
ever, the electronics that process these signals are basically one dimensional
systems like those that | have been talking about. It is possible to do two
dimensional signal processing directly using lenses or complex electronic
array systems, but these are not so easy to understand and their usage is not
very common.

The key concept that one must understand is that of spatial frequency.
Once the reader has a grasp of this concept they will find that they already
have the necessary background to understand image processing.Figure 1-10
shows a spatial frequency in the x direction of three. Compare this figure

with Figure 1-1 for the time domain. While the two figures do look differ-
ent (the first figure has three waveforms), they are basically the same thing
along any horizontal line in Figure 1-10. Note that there are exactly three
repeats of the color (black) bars. In a video signal, on a computer for exam-
ple, the values in this figure would range from 0 to 255 (for a 8 bit number
in gray scale).

Figure 1-11 shows a spatial frequency of four in the y direction. It is
common in optics to use the wavenumber k and denote the x and y compo-
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Figure 1-11.
A spatial frequency of 4

nents by ky and ky. The wavenumber is the number of wavelengths in a

given distance. If the distance is defined to be the image width and the
image height then the wavenumber are the same as the frequency.

A combination of the two wavenumbers is also possible and one such
image is shown in Figure 1-12. Note that along the x-axis there is only a
single wave and that along the y-axis there are two. Along the diagonal
there are three

Figure 1-12.

An image with a spatial
frequency k,=1 and
ky=2. The total spatial
frequency is then
k=ky +ky=3
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Once one has grasped the concept of spatial frequency, it should come
as no surprise that the most important tool for dealing with images is the
two-dimensional Fourier Transform. This transform takes any image into
the spatial frequency domain and in fact can be operated on by the same
sorts of filters that we have already been talking about. This is because the
two-dimension FFT is nothing more than a bunch of one-dimensional ones
all strung together as a single steam of data. To be more accurate for image
processing one usually uses the a cosine transform which is nothing more
than a simplification of the Fourier Transform which makes the processing
a bit faster.

I will return to this topic in Chapter 7 when | talk more about image pro-
cessing.

1.3.a Conclusion

This has been a long and challenging chapter, but the principles that |
have discussed here will be used time and time again throughout this text. If
on first reading the material is unclear, then perhaps a second reading is in
order. I am always amazed when people think that if they don’t understand
something the first time they read it then they won’t ever get it. From my
experience this is not at all the case. There have been many texts that | have
had to read twice to understand and | know of certain sections in texts that |
have read four or five times to truly comprehend. There is no doubt that
technical subjects can be difficult to follow, but diligence always pays big
dividends in the end.
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