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We often use more than one transducer in a system. When these transducers
occupy different frequency ranges, then their interaction is one of a crossover,
which we have already covered. This chapter is concerned with the effects of using
more than one transducer in the same frequency range.

There are a great many ways that we can array transducers, but there are two
primary parameters that influence their interaction, the translation of the individ-
ual elements and the rotation of these elements. The simplest case is when we have
point sources, for then there is only translation to consider. So we will start with a
discussion of a flat arrays of point sources. 

9.1 Simple Point  Source Arrays1

We have already studied the fundamental concepts for simple arrays when we
talked about the Fourier Transform relationships for sound radiation in Chap.4.
We noted that the sound field of an array of extended sources is simply the prod-
uct of the Directivity Function (DF) of the point source array and the DF of the
individual sources (where the sources are all identical). Since we have already stud-
ied the DF for arbitrarily flat sources we will have a more complete picture by
looking at the point source array problem 

First, we will consider an array of point sources along a line – a line array. We
will consider the DF for an arbitrary linear array of point sources. It is easy to
show that the DF is

(9.1.1)

2d = the length of the array
2b = the spacing of the points

1.  See Beranek, Acoustics
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An example of a polar map for a line array of 1.2 m height with a spacing of .3 m
between points (i.e. 5 points) is shown in Fig.9-1. We saw nearly identical results
to these when we studied piston sources. It can be shown that increasing d, the
length of the array, translates the null lines horizontally to the left (towards lower
frequencies) and decreasing b, the spacing between the points and hence the
number of points, increases the density of the null lines in the vertical (angular)
direction. We can think of this map, if normalized, as a plot of kb versus kd.

Extending our discussion to two dimensions is an easy matter since the solu-
tion will be the same polar map shown above along each coordinate direction. It
will actually be the same in any direction in the plane of the sources, although
scaled differently. The total solution is the product of the two individual coordi-
nate solutions.

The point source example is particularly simple but it clearly demonstrates one
of the key aspects of arrays – translation of sources causes severe interactions
between the them. We noted this situation when we talked about crossovers and
we are seeing it again in dealing with arrays. 

It should be apparent that this translation effect can be used to increase the
directivity of a small source, which does not have a substantial directivity by itself.
Another factor, one which is not obvious, is that the acoustic center of an array is
its geometric center, whether or not there is actually a source there. For example,
the acoustic center of two sources is directly in the middle of them. In this way, it
is possible to get crossovers which do not have a moving acoustic center with fre-

Figure 9-1 -   Polar map for a line array of sources
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quency. A much lower spatial aberration problem results than what was noted in
Chap.4. Two woofers with a tweeter in the center is an example of this configura-
tion. Although the usual configuration has a single tweeter in the center, a more
constant power response would be obtained by using two tweeters spatially sepa-
rated but with a common acoustic center to the two woofers. This would give a
narrower polar pattern in the vertical direction at high frequencies than the use of
a single tweeter. Two standard two way loudspeakers can be placed one on top of
the other, with the tweeters together, to achieve this design in an amazingly simple
manner. We have often used this technique.

We could go on and look at circular arrays and we would find that they would
best be studied by using the Hankel Transform, with which we are already famil-
iar. Not being axi-symmetric, however (due to the discrete nature of the points),
the solutions would involve Hankel Transforms in higher order modes2. We did
not look at this modification of the Hankel Transform, but it is a straightforward
and logical extension of what we have already seen. We will not develop this tech-
nique any further here. Finally, we should note that in the circular case we would
have to use the circular convolution integral to get the directivity of a circular
array of real sources. While doable, this is not trivial.

We will now move on and look at the effect of rotation on directivity.

9.2 Spherical  Arrays
Consider the problem of two sources placed in a sphere, but facing in differ-

ent directions. This is a close approximation to the design of a loudspeaker cluster
as often used in large venues, where numerous drivers are hung together in a
complex array to cover a wider area than can be achieved with one transducer
alone. 

First, consider the directivity map of a flared waveguide in a sphere with
intended 60°(±30°) coverage. The calculations are performed using the same
procedure that we developed in Section 3.1.5. The only difference is that here, the
velocity distribution is based on the results for a flared waveguide as we discussed
shown in Chap.6. 

The new An values are determined from

 (9.2.2)

where

(9.2.3)

b = a parameter which sets the angular polar response

2.  See Churchill, Operational Calculus
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In our example let b =1.8 which gives the velocity distribution shown in Fig.9-2.
This form for V(θ ) is a convenient way to specify a rapid falloff of velocity with
angle in a parametric manner. This velocity distribution can be seen to be about
constant – spherically – up to about 20° and to fall off to about 70% of the cen-
tral value at 30° and to zero at 45°. This is a reasonable assumption for a 60° cov-
erage waveguide which has a flare at its outer edge.

The polar map results are shown in Fig.9-3 for this single waveguide system.
The highest level has been deliberately left transparent to see the underlying grid.
The transparent areas in the corners have levels below -40dB. A typical polar map
for a coverage angle of 60° can be seen along with the classical midrange narrow-
ing, which is relatively mild in this design.

By using the principle of superposition, we can place a second device on this
same sphere and by simply rotating and summing two devices, we can simulate
two waveguide mounted in a cluster. This technique ignores the mutual coupling
between the two waveguides, but in these frequency ranges this effect is negligi-
ble. Fig.9-4 shows the results of this calculation.

It is readily apparent, and perhaps a bit surprising (perhaps not) that there is
virtually no interaction between the two sources. They simply add up to create a
polar pattern which is nearly twice the original. Note that even the midrange nar-
rowing effect has been reduced, which is a very pleasing result.

Fig.9-5 shows a slice of the polar map at 1kHz (a traditional polar plot). This
figure shows two devices which have coincident acoustic centers, angled at 0°,15°

0.250.25 0.500.50 0.750.75

Figure 9-2 -   The velocity distribution on the sphere (in cross section)
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Figure 9-3 -  The polar map for a single waveguide sphere
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Figure 9-4 -  Polar map for two splayed waveguides
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and 30° from each other. Note that the polar pattern widens in a predictable man-
ner as the angle between the devices increases. There are no complex interactions.

9.3 Displaced Spherical  Arrays

The obvious question now is what happens when the two spherical arrays or
spherically divergent wavefronts do not have coincident acoustic centers? This is
an easily calculation to make as long as we are willing to accept some inaccuracies.
By multiplying the polar calculations by a complex number, which represents the
phase delay to the field points due to the displacement of the acoustic centers, we
can easily represent the above situation. The problem is that the sphere, in order
to be a single solid, would have to become elongated. As long as the translation of
the acoustic centers is less than the radius of the sphere, then this issue is not a
real concern. Its effect would be limited to those angles beyond 90°, which we are
not particularly interested in. The forward pattern would hardly be affected  by
these errors.

Each spherical source is modified as

(9.3.4)
r0 = the displacement of the acoustic centers from the origin

Note that with the above definition, the distance from source to source is 2r0. 

-36-36 -30-30 -24-24 -18-18 -12-12 -6-6 00

Figure 9-5 -  Polar response for two waveguides splayed at 0°, 30° and 60°
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The polar map for two sources translated by .25m from the centerline is
shown in Fig.9-6. We can see that the interactions in this case take place primarily

at lower frequencies where there is significant overlap of the two sources energies.
At the higher frequencies, there is not as much energy outside of the main beam
and the interaction diminishes. There are some severe holes near and on the cen-
tral axis at frequencies around 4 kHz.

In order to better show what is happening, consider Fig.9-7 This is a polar
plot at 1.2kHz for three translational distances of 0m, .125m and .25m. We can
see that the basic polar coverage remains, but the interference ripples increase
with increasing translation. It is translation that causes interference, not the use of
multiple devices.

The results of this section indicate an important theorem in array design:
Devices will simply add, with no interference effects, so long as their acoustic centers are
at a common point. Phase interactions and interference results only when the acoustic
centers are not coincident, i.e. when the acoustic centers are translated in space.

Recalling the comments that we made about diffraction horns in Sec.6.7 on
page 161, we can see that lobing will usually occur because of the two acoustic
centers, there will always be a translation of one of them. We can array diffraction
horns only in one direction as defined by the geometry if we want to avoid lobing
problems.

Figure 9-6 -  The polar map for two translated and rotated waveguides
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9.4 Line Arrays in Cylindrical  Coordinates
By using the results of Sec.3.6 on page 58, we know that the far field pressure

response of a cylindrical source is given by

(9.4.5)

where

(9.4.6)

We can see that in the vertical plane, all one has to be concerned with is the Fou-
rier Transform of the vertical velocity distribution – an identical result to that for
the line of point sources.

Consider the convolution of a string of point sources of dimension b in the
vertical direction separated by a spacing g. The length of the array d we then be
(n-1)g where n is the number of sources. The vertical polar response will be the
product of two functions – let's call them DFp for the point sources and DFs for
the extended sources. We already know these two functions (see Eq.(9.1.1))

-36-36 -30-30 -24-24 -18-18 -12-12 -6-6 00

Figure 9-7 -  Polar response for three translations of two splayed waveguides
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(9.4.7)

and

(9.4.8)

and the product is

(9.4.9)

We can rewrite this equation, with x = kg sin ϕ, as

(9.4.10)

bg= b / g < 1.0 the ratio of source height to source spacing
where we have divided by n to normalize the results. With this form for the direc-
tivity we can investigate how the vertical pressure response is affected by the per-
centage of the spacing is taken up by the source. For instance, a value of bg =1
means that the source is the same height as the spacing and bg =.1 means that the
source is only 1/10th the vertical size of the spacing.

Fig.9-8 shows a plot of the directivity function F as a function of kg sin ϕ and
b/g for four sources. Noteworthy in this figure is that the vertical main beam
width (kg sin φ ≈ 0) is virtually independent of the individual source height. This
can be seen as the vertical lines at the extreme left side of this map, which repre-
sents the axial response, i.e. ϕ =0. The only effect that the source size has is on
the lobes is at higher frequencies or larger angular values. These can be seen as the
arcs along constant values of kg sinϕ ⋅ (b/g). For bg >.7, there is virtually no prac-
tical change in the vertical polar pattern with changing values of bg.

The next figure (Fig.9-9) shows the same calculations but with eight individual
sources in the array. Little has actually changed in this example other than the
lobes continue to be suppressed as we add sources and the directivity becomes
even more centrally focussed.

Lastly, we have shown in Fig.9-10 the calculations for one (bottom) and two
(top) elements. The single element map is shown for demonstration only. It really
has no meaning other than to show the map for a single source directivity pattern.
What is interesting is that we can see this pattern in all the maps, but it gets more
and more obscured as the number of sources goes up. Even two sources in the
array are enough to obscure the directivity of a single source for all except the
highest frequencies or smallest spacing (the upper right-hand corner). The impli-
cation is that as soon as there are more than a single source, the array dimensions
dominate the situation.
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Figure 9-8 -   Directivity function for a cylindrical array with 4 elements
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Figure 9-9 -  Directivity function for a cylindrical array with 8 elements
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Figure 9-10 -  Directivity function for a cylindrical array with 2(top) and 1 element(s)
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We have now seen that arrays offer several advantages that single sources
don’t. They can be used to increase the coverage angle without artifacts if the
acoustic centers remain close and they can be used to achieve a narrow directivity
pattern by proper selection of the array dimensions, source size and number of
elements. Indeed, a valuable addition to our design tools.

9.5 The Effect  of  Wavefront Curvature on Line Arrays
There is a great deal of interest in the effect that the wavefront curvature of an

individual element has on a line array's polar response. We know that for a line
array, the curvature in the horizontal plane determines the horizontal coverage,
but in the vertical plane the curvature of each element creates a scalloped source
and we want to know how the elements interact to create the vertical polar
response. We are interested in this problem because it is not really possible to get
a flat wavefront from a finite source. With the tools that we have developed, we
can easily calculate the effect that a vertical curvature of each element in a line
array has on the array response. 

Using Eq.(3.6.64) on page 62, where we will need to calculate the vertical DF,
F(kb sin φ ) for our specific situation. This is easily performed by first calculating
the DF for a single source and then multiplying by the DF for a vertical array of
point sources (convolving the wavefront velocities with point sources)

(9.5.11)

where v(z) is the vertical velocity distribution in the cylindrical aperture

(9.5.12)

which we obtained from Eq.(4.2.13) on page 76. The first term in the Eq.(9.5.11)
is for the line array of point sources and the second is for a curved source.

Fig.9-11 shows the polar map for a line array of eight elements of height 2b
with element spacing 2b and no curvature of the wavefronts in the vertical direc-
tion (top). In this case the second term above would be identical to Eq.(9.4.8).
The angular range is limited to 30° because of the extreme directivity of the array
in the vertical direction. The lower polar map is for the same array but with a ver-
tical curvature of each element, which corresponds to a virtual wavefront radius
l = 2 b. This can be seen from Fig.4-5 to be a substantial curvature. With the
exception of the extreme off-axis results these two maps appear identical. There
does not seem to be a substantial effect of element curvature, which is in stark
contrast to both intuition and popular belief.
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Figure 9-11 -  7 Element line array with no curvature (top) and a curvature of .5 b
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It is easy to understand these results, however. In a line array the vertical
response is dominated by the vertical extent of the array. We also saw this in the
previous section. The details of the velocity distribution of an individual element
simply does not enter into the problem. Mathematically this is to say that in
Eq.(9.5.11) the result is dominated by the first term, which is far more strongly
dependent on φ than the second term.

9.6 Cardiod Enclosures
This section may well have belonged in the chapter on enclosures, but it does

involve multiple transducers used for directivity control and as such is also a good
fit here. We have seen that placing more than one source in an enclosure gener-
ates a complex set of interactions mostly depending on the distance between the
sources. We have looked primarily at arrays placed in a single plane. In this sec-
tion, we will develop techniques for use in finite sized enclosures. These enclo-
sures will be spheres, but the ideas can easily be extended to normal rectangular
enclosures.

As we saw in previous sections one can place a source in a sphere and com-
bine multiple sources by rotating them (and translating to a limited degree) and
adding the far field responses. Consider the following example of what we may
want to achieve.

The goal is to design an enclosure which has two transducers and which
exhibits a cardiod directional pattern. (For more information on cardiod patterns,
see Chap.11). For our purposes it will be sufficient to require .

Lets assume that one source is on the front of the sphere and the other on the
rear. By summing these two sources weighted by a complex number, we can force
this sum to obey the above equation. This procedure leads to

(9.6.13)
pf(theta,f) = the polar pattern for the front source
pr(theta,f) = the polar pattern for the rear source

We have considered only one weighting factor since one is sufficient for directiv-
ity control. To control both the directivity and frequency response, we would have
to use two complex coefficients.

By setting Eq.(9.6.13) equal to zero at θ =0 we can develop the function B( f )
as

(9.6.14)

Fig.9-12 shows the polar map for the two source system with the rear source
passed through the filter B(f). This figure is shown as a function of ka, where a is
the radius of the sphere. Fig.9-13 shows the magnitude and phase of the complex
filter B( f ) (solid) along with a first order low pass filter, shown as the dashed line.
(Both filters are plotted as functions of ka.) Note that the magnitude of the sim-
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ple filter is nearly correct, but the phase is wrong. Fig.9-14 shows the polar map
which would be obtained by the use of the simpler filter. It is not as good, but it
does improve on a simple monopole.

The situation could be further improved with the use of delay in the filter,
which is in line with the rearward facing source. This would give a better match to
the phase response of the desired filter. Delay is not trivial to obtain, but it can be
achieved with either passive or active means. (With DSP, it is trivial.) The design
of this all-pass filter is not something that we will be covering here.

It is also possible with the above technique to obtain a whole array of polar
responses. Each of these responses has a particular polar pattern, which will come
with a particular axial response – the two results are linked. Fig.9-15 shows the
axial responses for the various configurations. The Hyper-cardiod has a null
forced at 3π/4 and the bipole has one forced at π/2. (Note: These responses are
in addition to the response of the sources themselves.)

Finally, it should be obvious that directivity functions of even higher orders
can be obtained in exactly this same manner with the addition of more sources.
Each additional source yields an additional degree of freedom and a potentially
higher order directivity function.

Figure 9-12 -  Polar map of an electronically created cardiod pattern
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Figure 9-13 -  Magnitude and phase of cardiod filter
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Figure 9-14 -  Polar map for a cardiod array with a simple 1st order filter
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9.7 Passive Low Frequency Direct ivity
Perhaps the best known way to obtain low frequency directivity is with the use

of a dipole. A dipole yields a stable polar pattern over a large bandwidth, but suf-
fers from poor efficiency. The question naturally arises as to the possibility of
obtaining a more directional response at low frequencies without the poor perfor-
mance in output. Another thing that makes this problem interesting is that it will
use many of the tools that we have assembled in this text. We will combine the T-
matrix calculation with a spherical polar model in order to investigate the possibil-
ity of obtaining the response that we seek.

Rather than go down what turns out to be a dead end, we will simply state that
there is no possibility of any real degree of directivity control for closed, ducted
port or passive radiator ported enclosures. There just is nothing that one can do
with these type of enclosures.

Consider the following system as shown in Fig.9-16. This system uses a lever
in the reverse form from how it is normally used. The idea is that by tuning the
lever very high in frequency, above the passband, that its output will “track” that
of the source, but with a diminished amplitude thus giving a combination of a
monopole and a dipole response. We hope that this combination will have greater
efficiency than a dipole but with a narrower directivity than a monopole. We will
analyze this configuration in order to ascertain how close we can come to our
objective.
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Figure 9-15 -  Axial frequency response for higher order enclosure
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We start by using the T-matrix equations for an Acoustic Lever™ from which
we can derive the following results

(9.7.15)

(9.7.16)

(9.7.17)

zd(ω) = the acoustic load on the rear of the diaphragm
Vd(ω) = the transfer function from the input voltage to the diaphragm 

velocity
T(ω) = the transfer function from the diaphragm velocity to the lever 

velocity
Ml = the lever mass
Cl = the lever compliance
Rl = the lever resistance
Ad = lever driven area
Ar = lever radiating area
V = volume between lever and source
Xd = driver parameters

V

Ad

Ar
Ml, Cl, Rl

Figure 9-16 -  Example 
enclosure for cardiod system
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From this set of equations, we can calculate the velocities of both the source and
the lever. 

We will also need the equation for the radiated pressure from a sphere

(9.7.18)

a = radius of the sphere
r = the field radius>> a

where we have left off constants since we will only be dealing with relative values
here. The An’s are the values for a rigid spherical cap (Sec.3.5 on page 51) 

We can now write our answer as (in the variable ka)

(9.7.19)

The example that we will show here has a typical loudspeaker in an average sized
woofer enclosure one meter in diameter. The lever is light and stiff with a lot of
damping. There are so many degrees of freedom in the lever design that the spe-
cific numbers would not mean much. What we will show here is a simple example
of a monopole, a dipole and the cardiod system with a rear lever all normalized to
the monopoles high frequency response (which would be nearly the same for all
of these systems). 

When these calculations are made, the resulting system is seen to rise slightly
with frequency – just as the dipole does, but greater than a monopole. A simple
first order LP filter in series with the dipole and cardiod systems would “flatten”
the response. The cardiod would require another higher order LP filter to sup-
press the large resonance of the lever. The axial responses for all three of these
systems are shown in Fig.9-17.

At the lowest frequencies, the cardiod has the greatest extension and the great-
est output. With rising frequency, the monopole quickly gains in output, followed
by the dipole. The cardiod tracks the dipole with only a few dB less output in the
mid-band. The monopole and dipole both have omni-directional response
throughout the bandwidth shown. The polar map for the Acoustic Lever™ car-
diod enclosure is shown in Fig.9-18. The cardiod has a better directivity than the
monopole, but without the low frequency loss of the dipole. Each of these sys-
tems has advantages and disadvantages.

9.8 Summary
Arrays – multiple sources covering a common bandwidth – offer an added

flexibility in controlling the directional patterns of what are otherwise uncontrol-
lable single source patterns. By using these techniques one has a much greater
design flexibility and can achieve a constant narrow directivity to a much lower
frequency than what is practical with the waveguide approach.
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Figure 9-17 -  Axial response for monopole, dipole and cardiod
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Figure 9-18 -  Polar map for Acoustic Lever™ cardiod enclosure


