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R O O M  A C O U S T I C S

T H E  S M A L L  R O O M

As much as we would like to cover this subject in its entirety, alas we cannot.
The subject is far too vast to cover completely in a text on transducers. The unfor-
tunate thing is that from a subjective point of view, one of the most important
aspects of the listening experience is the room. Technically, the loudspeaker design
can be optimized to fit the room design, but seldom, if ever, do we optimize the
room for the loudspeaker design. This is simply because the room usually already
exits and even if it doesn’t there are fundamental characteristics about rooms
which simply cannot be alleviated; like room modes and wall reflections.

There are some important concepts in room acoustics that must be understood
in order to understand what we are trying to achieve with a loudspeaker design. We
will cover these fundamentals briefly with our focus mainly on small room acous-
tics since that is the venue where most loudspeakers are used. We do not intend to
discount the importance of sound reinforcement in large spaces, which is indeed
an important and interesting subject, but these spaces are well covered in numer-
ous other texts on room acoustics. The small room, on the other hand, has hardly
been examined anywhere. There are significant differences in small room acoustics
when compared to larger rooms and we will highlight some of these, as well as
some similarities.

8.1 The Rectangular Room1

The room response for a rectangular room is a simple extension of the solu-
tions to the Wave Equation that we have already seen. The three spatial dimen-
sions will have three independent solutions: X(x), Y(y) and Z(z). The separation
constants, which turn out to be the room’s modes, are summed together, as
required by the separation of variables technique

(8.1.1)
and the eigenfunctions are

1.  See Kuttruff,  Room Acoustics, Morse, Vibration and Sound, or Morse and Ingard, 
Theoretical Acoustics.
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(8.1.2)

There are a number of boundary conditions that we could apply, such as a rigid
wall, a wall with an impedance on it, a driven wall, etc. These conditions could be
in any perturbation of the three coordinates. Clearly, this is far too many examples
to study here. We will start by looking at a perfectly rigid room, with a small
amount of damping uniformly spread around the room.

By applying the boundary conditions

(8.1.3)

Eq.(8.1.2)  become

(8.1.4)

and the complete solution for the pressure

(8.1.5)

 

and  

We will account for damping by letting the wavenumber k be complex, where δ is
the damping constant. This approach is accurate so long as the damping is small
and uniformly distributed. We will see a more accurate formulation in later sec-
tions.

We are interested in the response a point in the room xp due to a point source
at point x0. The result will be the Green’s Function for the room and from it we
can calculate the response at any point due to a source placed anywhere in the
room. In order to get the Greens function we need to solve the equation

(8.1.6)
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Substituting Eq.(8.1.5) in Eq.(8.1.6) results in

(8.1.7)

Multiplying both sides of this equation by the eigenfunctions (denoted k') and
integrating over all three coordinates yields

(8.1.8)

Using the fact that the modes are orthogonal and the properties of the delta func-
tion we can obtain a formula for the coefficients Almn

(8.1.9)

Finally the Green’s Function for a rectangular room

(8.1.10)
A typical room response calculation using this equation is shown in Fig.8-1. This
calculation used 27,000 modes plotted along 400 log spaced frequency points, a
very high resolution plot. The room is typical of a fairly large sized room that
might be found in a home – i.e. a living room. It is three meters tall by six meters
long and four meters wide and has a small amount of damping. The source is in
one corner and the receiver is just under two meters from the source straight out
into the room.

The falloff at about 2 kHz is not real, but it is deliberate. It is there to show
where the modal calculation no longer has modes, i.e. above the resonance fre-
quency of mode with the highest mode number used in the calculation. The
response falls to zero above this frequency. 

The first few modes are clearly seen at about 29Hz, 40Hz, 50Hz, etc., but it is
certainly obvious that there are not 27,000 peaks in this response. This means
that, above about 100Hz, we cannot say for certain if individual peaks in the
response are actually modes or not. With this many modes it is inevitable that
some mode(s) will exists at each and every peak; there could actually be many.
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The corollary to this is that each mode does not necessarily have a corresponding
peak. 

Looking at Fig.8-1 we can make the following observations.
• Above some frequency peaks in the response are no longer due to

modes.
• The response actually rises at lower frequencies below the first non-

zero mode (and the first anti-resonance). This is due to the 0,0,0
mode, i.e. a static pressure mode. Its level depends on the static pres-
sure release resistance and only goes to infinity for a completely
sealed (air tight) enclosure. Real enclosures, most notably cars, can
have significant low frequency gain as a result of this static mode.2

• Above about 1.5 kHz, we no longer have enough modes in the calcu-
lation to get accurate results and hence the response falls off, indicat-
ing that it is the modes that carry the energy.

• The response flattens out above some frequency (about 100 - 200 Hz
in this curve) and has a fairly constant response ripple amplitude. This
is in stark contrast to the lower frequencies where the peak-to-trough
(resonance to anti-resonance) ratio decreases with frequency and then
widens again as the modal distribution gets larger.

2. See Blind and Geddes “The ESP Sound System”, JAES
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Figure 8-1 -  Typical room response for a closed room with rigid walls
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Consider now another computer experiment, the results of which are shown
in Fig.8-2. In this figure we have calculated the response for the same room as
above, but now we have varied the sound velocity by ±1%. A 1% change in the
speed of sound can occur with less than a 1° change in room temperature or a
correspondingly minor change in atmospheric pressure. It is a virtual certainty
that the sound speed will change by this amount in any room over a period of a
few minutes or quite possibly a substantially less period of time. A small air cur-
rent could even change the relative local sound speeds in different parts of the
room by this amount. At low frequencies, this speed variation has little effect, but
at the higher frequencies it appears to make a great deal of difference. By enlarg-
ing a section of the plot from 700Hz to 750Hz and plotting the calculations with
a higher resolution, we will get the curves shown in Fig.8-3.

This is an important result, for it indicates that the frequency response of a
room is not at all a stable quantity. Similar to the concepts in chaos theory, the
summation over an extremely large number of modes, which exist in rooms at
higher frequencies, creates a hypersensitivity to even minimal changes in the
parameters. Very large changes in the results stem from very small changes in the
underlying properties. There is little to no recognizable similarity in the three
curves shown in Fig.8-3 although we might naïvely have expected them to be
identical.

The interesting thing is that it turns out that we will get this same result for a
small displacement of the source or receiver, in any frequency band (above some
frequency, which we will define shortly), for any source or receiver locations and

10 100 1,000
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Figure 8-2 -  A room calculation with a very small perturbation of the wave speed
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most importantly, for any room, of any size, shape or reverberation time. This is a
remarkable situation.

The only way that we can even begin to discuss the frequency response of
rooms is to consider this response to be a random variable. We can then consider
its statistical properties, etc. but we cannot consider it to be a deterministic quan-
tity, i.e. a stable curve. We must never talk about any single measurement of sound
in a room with any level of assurance as to its validity.

Along these lines it would be good to know how the pressure response (in dB)
levels are distributed, the probability distribution function. Fig.8-4 shows the
probability distribution, actual (bar) and as a fitted function (line), for the pressure
response calculations in the previous figures. This distribution is a classical case of
a Poisson distribution. (It is important to remember that this distribution is in dB
values of the response, not linear ones.) An identical result was shown by
Schroeder in 1954 using an entirely different technique than that used here.3 This
distribution shows that the response is almost Gaussian about the zero dB line
with a standard deviation of about ±5dB, Schroeder found 5.5dB theoretically.
The mean here is not zero dB only because the absolute scale in the calculations
was arbitrarily chosen. If it were normalized to the RMS pressure throughout the
room then the mean would be zero dB.

3.  See Schroeder, “On the Statistical Response of Sound in Rooms”, JAES 
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Figure 8-3 -  the same calculation as in Fig.8-2 but expanded to show the 
detailed frequency response
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These results imply that a measurement of a tone or tones in a room will have
an expected error of 5.5dB – a virtually useless measurement. As with any statisti-
cal quantity, this variance can be reduced by using a greater number of degrees of
freedom in the measurement. We can achieve this by either frequency averaging,
spatial averaging or typically both. Frequency averaging alone requires a fairly
wide bandwidth, about an octave to get the expected error down to about 1dB.
By performing a spatial averaging we can get a much narrower bandwidth mea-
sure to the same expected error of 1 dB. Understanding the implications of the
statistical nature of the sound field in rooms is paramount to the understanding of
room acoustics.

As we stated earlier, the statistical nature of the sound field in a room is valid
only above a certain frequency. Kuttruff4 states that frequency is

(8.1.11)

fs = the Schroeder frequency

α = the damping constant in s-¹
V = the room volume in m³

The Schroeder frequency is the lower limit of the applicability of the statistical
assumption. Eq.(8.1.11) has been verified experimentally. In the room whose

4.  See Kuttruff, Room Acoustics
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Figure 8-4 -  The probability distribution in dB level for the pressure response in a room
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modeled response we have shown in this chapter, the statistical region appears to
start somewhere between 100-200 Hz. Applying Eq.(8.1.11) to this room (using a
damping constant of about 10s-¹ and a volume of 76m³) we would expect fs to be
at about 181Hz. We can see that this equation is reasonable even for small rooms. 

For comparison purposes

(8.1.12)
T = reverberation time in s
δ0 = the mean damping coefficient in s-¹

Fig.8-5 shows a graph of fs versus room volume at several values of the rever-
beration time. Residential rooms hover around the 100m³ point, commercial

rooms the 1000m³ point and large theatres etc. around 10,000m³. Clearly, the
geometrical acoustics assumption is valid at any audible frequency in any theater
and it is also valid for most commercial rooms, except perhaps smaller reverber-
ant ones, but it is certainly not valid in residential rooms at low frequencies.

It is interesting to note that the assumptions of geometrical acoustics, where
sound rays reflect off of walls, obeying optical laws of reflection etc., are only
valid and can only be applied above fs. Below this frequency, one can no longer
think of sound in a space as traveling in a ray-like fashion and only modal
approaches to analysis can be used. This result has significant implications to con-
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Figure 8-5 -  Schroeder frequency versus room volume and reverberation time
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cepts such as directivity, damping placement, etc. with which we have become so
familiar.

In the geometric acoustics region, the sound field is well adapted to analysis
with computer programs using concepts such as specular reflections, phase grat-
ings, etc. which are all well defined and applicable. Owing to the fact that there is
so much literature in the field, which utilizes geometrical acoustics, we will not
cover this subject here. We will also discuss some aspects of early reflections as
found in small rooms which are, of course, above fs. What we will look at in some
detail is the region below fs and the vicinity of the transition point, where very lit-
tle literature is available on room acoustics in this region.

8.2 A Wall  With an Impedance
One important aspect of the modal problem is the way finite wall impedances

affects the modes. We will now show how the fundamental equations of the pre-
vious section are modified to account for these different boundary conditions.
This will be done only for a single dimension, the rationale being that the analysis
and conclusions are identical for the other two dimensions.

The new boundary condition is one where we specify the relationship between
the pressure and the velocity – the pressure gradient. The new conditions become

(8.2.13)

β = the specific acoustic impedance at the x = Lx wall
This condition must be applied at each boundary where there is an impedance
value other than infinite. The basic solution is still

(8.2.14)

Inserting this equation into the two boundary conditions (the other, for x =0, is
the same as in the previous section) yields

(8.2.15)

Which after some algebraic manipulation leads to

(8.2.16)

This is a transcendental equation in kx which can be solved (albeit with some dif-
ficulty) for the eigenvalues. We must remember that both kx and β are, in general,
complex quantities. 

Taking the natural log of both sides of Eq.(8.2.16) we get
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(8.2.17)

which is still a transcendental equation and we seem to be no better off. If, how-
ever, we now consider the fact that we are primarily interested in approximate val-
ues of kx in the vicinity of each of the resonance frequencies then k ≈ kx and the
above equation becomes much simpler and more readily solvable. The resulting
form is

(8.2.18)

β =δ + iε = the complex wall specific acoustic impedance
We can see that for large values of β, we will get eigenvalues equal to the original
values kx = lπ / Lx 

Lets examine what happens when we have a wall with only a reactive part, i.e.
δ = 0, then Eq.(8.2.18) becomes

(8.2.19)

For negative ε (compliance-like) the eigenvalues are raised and for positive values
( mass-like), the eigenvalues are lowered (ε must be greater than one for validity
of these results).

For a purely dissipative wall ε =0 and we have

(8.2.20)

A value of δ >1.0 will result in a decay of energy over time, but no change in the
frequency of the mode.

When we compare this result to the results shown in Kuttruff5 for an imped-
ance on both walls we see that we have exactly the same results. This is, of course,
good (that we agree), but we should remember that the two problems are slightly
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different. Here we had only one wall with an impedance and Kuttruff assumed
two. The equivalence of the results implies that, in the modal region, it makes little
difference where the impedance is placed. It will act as a combined impedance
independent of its placement. This is good to know! It means that if we want low
frequency damping in a room to smooth out the modes then we only need to do
this on one wall of each opposing pair, a real savings in construction cost. Of
course in the geometrical acoustical region it makes a lot of difference on which
wall the damping is placed!

The mode functions (Eigenfunctions) can be determined from Eq.(8.2.15)
which yields the result that A = B and so the functions are simply

(8.2.21)
where the complex value of kx carries the information about the wall impedance.
These functions are shown in Fig.8-6 for the cases of a rigid wall, a damped wall,
a wall with a mass like impedance and a wall with a compliance like impedance.
The standing wave ratio is constant for all but the dissipative case, which
decreases near the absorbing wall for the absorbing case. The wall at x =0 is rigid,
so no changes take place there 

5.  See KuttRuff, Room Acoustics
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Figure 8-6 -  modal functions for mode four with various wall impedances
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8.3 Fundamental  Concepts  in Small  Room Acoustics
We should first mention a factor that we have ignored up to this point, regard-

ing sources in rooms, which is important to understand. This factor concerns the
characteristics of the direct and reverberant sound fields. The direct field is often
confused with the nearfield, a concept that we have already talked about. 

Consider the following experiment: place a source somewhere in a room emit-
ting a continuous signal and measure this sources output level as we move away
from it along a straight line. Let us consider this to be an ideal source in that it
does not have a significant near-field component to worry about. We would see
that as we moved away from this source the sound level would fall off at the rate
of 6dB per doubling of distance, that is, until we reached the point at which the
level of the reverberation field, the energy continuously bouncing around the
room, equals that of the sound directly emitted from the source. Beyond this
point, the sound level will be stationary, at least as stationary as the random nature
of the sound field allows. The direct field is that portion of the sound field which
surrounds the source and has a level greater than the reverberation level. The rest
of the room is in the reverberant field where the sound is usually considered to be
diffuse or random in nature. This brings us to a fundamental consideration when
talking about sound sources in rooms – the random nature of the sound field
applies only to the reverberant field, not the direct field. 

The direct field depends on the reverberant characteristics of the room. As the
reverberation level goes up, the direct field recedes and vice versa. Fig.8-7 shows
this effect for four rooms with increasing amounts of reverberation. The direct
field is the solid line (the field in an anechoic chamber) and the reverberant field is
where the lines become horizontal. Note that no clear cut transition is apparent,
much like cutoff in a filters response. For higher reverberation the sound field is
never truly direct. 

We should make another important point regarding the direct and reverbera-
tion fields and that is that the first sound arrival from any source is direct, in that
there has not been sufficient time for the reverberation to build up. Subjectively,
this is a crucial point because it means that if there is sufficient time before the
reverberation field has built up, then the ear will hear the direct sound free from
reflection effects due to the room (nearby diffraction effects, cabinet edges etc.
will still occur) and the reverberant sound will be a subjective event separate from
the direct sound. Note that the direct sound will have the same frequency
response as the of the loudspeaker system, which highlights the importance of the
anechoic response. But, when talking about subjective impression, we must also
consider the reverberation field. The importance of this field depends on several
factors, which can be quite complicated. The first is the frequency response of the
reverberant field. This response depends on the “power” response of the loud-
speaker, the integrated polar response over all angles, as well as the room’s acous-
tic response. For this reason, the ideal system would have a flat axial response plus
a flat power response. The frequency response of the reverberation field is a com-
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bination of two responses: the loudspeakers power response and the rooms fre-
quency response. We should always consider the frequency response of the sound
absorbing material placed throughout the room as this affects the frequency
response of the rooms reverberant field.

The importance of the power response further depends on where the listener
is relative to the direct and reverberant fields. In the reverberant field the power
response is very important because the reverberant response depends so heavily
on the loudspeakers power response, but also the room absorption, as we said. If
the listener is in the direct field of the source then the power response is not as
important since it is a small factor in the total sound that arrives at the listener's
ear.

It would appear that we want is to always be in the direct field, since then, only
the axial response is important. We would not need to worry about the polar
response, the room response, etc. This situation is easily achieved in practice by
making the listening space as nearly anechoic as possible, and/or by sitting close
to the loudspeakers. The problem with this approach is that there is then no natu-
ral acoustic contributed by the room itself. For good “spaciousness”, (a term
meaning the subjective feeling of space in the sound) it has been shown that the
reverberant sound arrival should come from many directions, but principally in
the horizontal plane. The characteristics of the ear make the reasons for this obvi-
ous. Being in the horizontal plane our ears are most acute to sound localization in
this plane, which again is logical since the world we live in is principally in the hor-
izontal plane.

0.1 1.0 10.0 100.0
Distance from source

1

10

100

Figure 8-7 -  Falloff of sound level in a reverberant field for several values of reverberation
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In a dead room, there cannot be any perception of spaciousness from the
room and the source cannot provide sound arrival from multiple directions.
(There are technologies which can trick the ear into perceiving this effect, as well
as multi-channel technologies which can create multiple arrivals from multiple
directions, but they are not widely available. These techniques lie more in the
domain of signal processing than loudspeaker or room design.) In some schools
of thought, a dead room is ideal because then the only acoustics are in the record-
ing itself. The listening room does not add any acoustic of its own. We do not
subscribe to this belief.

In order to have a feeling of being in a large room with good acoustics, i.e.
spaciousness, one must have a perceptible amount of reverberation, which can be
difficult to achieve in a small room. Our experience has shown that with proper
attention to the room design we can have a small room with a substantial rever-
berant field component and the associated feeling of spaciousness. In this
approach, however, the polar/power response of the system becomes of para-
mount importance.

We should also consider the directivity of the system from another perspec-
tive. If the source is omni-directional, then the reverberation field is established
much faster than it would be for a system with a narrow directivity. In other
words, the directivity has a pronounced effect on the time delay at which the
reverberation field over takes the direct field. This delay also exists in large rooms
where the direct sound arrives well before the build up of the reverberant field
and it is usually quite large. An omni-directional source cannot achieve any signif-
icant amount of delay in the build-up of the reverberant field. It happens almost
instantaneously. A properly designed narrow directivity system can have a sub-
stantial delay in the reverberation buildup. An omni-directional sources almost
instantaneous effect on the reverberant field and its predominance in the market-
place is, perhaps, why there is a significant contingent of practitioners who prefer
dead rooms.

Some paragraphs above we mentioned that “if there is sufficient time before
the reverberation field has built up” without really quantifying what we meant. In
Chap.13 we will learn that the ear integrates sound over about a time window (see
Sec.13.3 on page 284). If there is reverberant sound (reflections) after the arrival
of the direct sound but within the time period of integration then the ear will inte-
grate the two sounds, creating the comb filtering effect, which results from the
summation of two signals time delayed from one another. Early reflections
change the perception of the timbre and localization of the sound presentation.
Reflections in larger rooms almost always occur outside of the ears' integration
time and have a completely different subjective effect than they do in small
rooms. 

We can see that if there are no reflections and hence no reverberation buildup
in the first 20ms (or there about), then the direct sound from the loudspeaker will
be heard without coloration from the room. Remember that in a small room the
reverberation build up can be extremely fast and once the first reflections begin to
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arrive, they are quickly followed by others and the reverberant field has been
established. A 20 ms delay is difficult to achieve in a small room. Delays of this
magnitude amount to about seven meters of additional travel for the reflected
wave, which in a room of typical dimensions is virtually impossible to achieve. It
is extremely important to minimize these early reflections without the use of sig-
nificant amounts of sound absorbing material because a reduction in the reverber-
ation field will reduce the spaciousness quality. Once again, source directivity can
be a critical advantage in dealing with this problem. A narrow sound beam can be
aimed to prevent the sound from hitting nearby walls until well after it has arrived
at the listener, once again pointing us in the direction of using narrow source
directivity for small rooms.

Consider the schematic drawing shown in Fig.8-9. Two identical 90º coverage

loudspeakers are placed in or near the front corners of the room. However, they
point in different directions. Speaker A has a very small delay between the direct
sound and the first reflection while for speaker B the delay is much larger. In
addition, the direct sound and delayed sound in setup A both arrive at, principally,
the same ear, while for B they arrive at opposite ears. The timbre shift will be sig-
nificantly lower in setup B because there will be less interference between the
direct and reflecting waves. Further, the ears' ability to minimize the negative
effects of two sound waves tends to work better when the sound is binaural rather
than monaural. A small amount of sound absorption placed at the location of the
early reflections will further reduce the degradation due to these reflections.

Direct A

Direct B

1st Reflec. B

1st Reflec. A

Listener

Figure 8-8 -  Room layout showing coverage of directive sources in two 
different configurations

B

A

C
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There are, of course, even earlier reflections from the floor and ceiling, but these
can also be minimized by having a narrow vertical directivity. This also has the
added advantage of creating the maximum amount of sound energy is the hori-
zontal plane where we want it.

It should be obvious that if we had the narrow directivity loudspeaker labeled
C that the early reflections would be minimized and the onset of the reverbera-
tion would be significantly delayed.  If this room were live, then there would be a
significant amount of lateral reflections delayed in time from the direct sound.
While the directivity of C is perhaps a little extreme, we clearly prefer it over an
omni-directional source in a live room.

This has been a simplified analysis of some of the problems of small room
acoustics, but it does point out one thing very clearly. What we want in source
directivity is not the omni-directional response that we get from the extremely
common small loudspeaker systems that dominate today’s marketplace. We want
a narrow directivity such as can only be achieved with waveguides and/or arrays
of transducers. This is one of the primary rationales behind our detailed analysis
of directivity control  in this text. Controlled source directivity is essential to good
sound in almost any venue, but it can be critical in a small room. We feel that this
area of loudspeaker design has been grossly overlooked in the vast body of litera-
ture on loudspeaker design.

8.4 Source Placement6

We have seen that small rooms can have significant problems with modes at
low frequencies (see Fig.8-1). Most rooms will not enjoy the significant boost that
comes from the zero order mode as shown in the figures since most rooms have
doors and ventilation systems which negate this effect or, at least, substantially
reduce it. By now, the reader should also have been convinced that the steady
state room response, above fs, must be treated as a random variable (even though
it appears to be deterministic). Further, we should now realize that our principal
concern is with the mean response in rooms, since we must expect any single
response to have errors, relative to this mean, of about 6 dB. From our studies
thus far it should be clear that the low frequency modes will generate, on the aver-
age, an even larger frequency response variation than what we would expect to
occur at the higher frequencies. The question as to the proper type and location
for a low frequency source is natural.

A concept that we hear a lot about in small room acoustics is that of modal
distribution. One of the authors did his dissertation on this topic.7 Using FEA,
the sound field statistics below fs were investigated for several different room con-
figurations, source locations and damping levels. A major result of this study was

6.  See Geddes, “Sources in Real Rooms”, JAES
7. See Geddes,  An Analysis of the Low Frequency Sound Field in Non-rectangular 
Enclosures …
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that the modal distribution was not a significant factor once some damping was
achieved at these frequencies. The modal overlap and the damping distribution
were found to be the important parameters. The modal overlap is basically con-
trolled by the amount of damping that is present. The greater the damping, the
greater the modal overlap. The net result being that given a sufficient amount of
uniform damping (i.e. not modal dependent), all rooms  have basically the same
low frequency statistics regardless of their shape.

The second important consideration to come out of this work was the impor-
tance of the distribution of the damping in the room.  Non-rectangular rooms do
have a clear advantage here since a room with one wall slanted (angled) by at least
15º in two dimensions (i.e. the normal does not lie along any coordinate direction)
will “mix-up” the modes so that all sound waves will hit all walls. This inherently
causes a uniform distribution of the damping no matter where the damping takes
placed. The effect that the slanted wall had on the modes was of secondary
importance, although, admittedly, there was a modest improvement in the statis-
tics for lightly damped rooms (i.e. reverberation chambers). No residential room
would ever fit into this later category, however.

From what we found in section 8.2, we should realize that a rectangular room
with a reasonable amount of low frequency damping on at least one of each
opposing wall pairs will have a low frequency sound field which is “as good as it
gets”.

There has also been much discussion about the proper location and/or source
type for the low frequency source so as to smooth out the response irregularities
that we have noted. Some have argued that a dipole is a better low frequency
source than a monopole because it excites fewer modes. We should emphasize,
however, that a dipole – a pressure gradient (or velocity) source – does not neces-
sarily excite fewer modes; it simply excites different modes. This is because a
dipole excites pressure nodes (velocity anti-nodes) while monopoles excite pres-
sure anti-nodes (velocity nodes). In general, there is no reason to expect a differ-
ent numbers of modes to be excited by a dipole than a monopole. We should also
realize by now that exciting fewer modes also does not necessarily reduce the
response variations, in fact it may very well increase them. It is not the room modes
that cause room response problems, but the lack of modes, typical of low frequen-
cies in small rooms, which cause problems. This is a widely misunderstood con-
cept. Perhaps the Greeks understood this when they placed multiple large urns
(Helmholtz resonators) around the dead outdoor spaces that they used for the-
atre. We might want to consider doing something along these same lines in our
small rooms.

Fig.8-9 shows a typical response curve generated by placing a monopole, (top
plot) and a dipole (bottom) in a two dimensional room. We have only used two
dimensions because the third dimension does not add anything to the study (we
ignored the floor to ceiling dimension). The room in this figure was five meters
wide by six meters long and the source was one meter out from a corner. The
room has a medium amount of damping. The response curves at several random
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Figure 8-9 -  Room responses for a monopole and a dipole
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locations in the other half of the room (away from the source) are also shown in
these figures. The average frequency response curve (what we would get from a
spatial average of the individual frequency response curves) is shown as the solid
line. The mean level over all receiver positions and frequencies is shown as the
horizontal line. The solid line at the bottom of the plot is the deviation of the
average frequency response curve from the mean level and the horizontal line is
the frequency average of the deviations. We will call the curves at the bottom of
the plots the roughness of the response.

The first thing that we notice about these two plots is the lack of low fre-
quency response for the dipole. This, of course, is to be expected as one goes
lower in frequency since the dipole cannot generate a static pressure, while a
monopole can. So at the lowest frequencies the monopole will always have the
greater response. The extreme low frequency falloff of the dipole is ignored in the
data calculations to follow. This is because no real source could drive a room at
these frequencies anyway. In the plots we have shown the response as if the
source could go down to DC, but in the data calculations we have excluded the
responses below 20Hz.

Table 1 shows the results for three sources: a monopole, and two dipoles with
different dipole moments (the dipole moment is the distance between the positive
and negative sources which make up the dipole). Several source locations were
investigated. The location parameter is the distance out from the corner to the
source. For any single source location, the error is probably 1dB, while the aver-
ages would have an expected error of about one-third of that.

Source
 location

 Monopole  Dipole (moment)  Avg.

.1m .2m
Mean Sound Pressure Level (dB SPL)

.5  88.2  83.3  89.5  87.0
1.0  88.0  80.7  86.5  85.1
1.5  86.7  80.2  86.3  84.4
2.0  87.9  79.2  85.3  84.1
2.5  89.0  78.9  85.2  84.4
3.0  87.7  79.6  85.9  84.4

Avg.  87.9  80.3  86.5  84.9
Table 8.1:  Response averages and roughness numbers for three sources in six locations
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It is evident from this table that the dipole does not always have smaller
roughness, as hypothesized (although not by us). In fact, on the average, the
monopole would win the roughness contest. Although, when the dipoles are
placed “near” the corner they show a remarkably small roughness. Fig.8-9
showed the frequency response for this location and it can be seen to be very
smooth. We should, however take note of the low frequency falloff and the rising
roughness which results. The roughness jumps up as the dipole is moved further
into the corner principally because the low frequency response falls off to such an
extent that the roughness numbers become very high. The detailed response is
still fairly smooth. It appears that if one can live with the extremely low output of
a dipole in a corner then this is a good source configuration at that location. It
also appears that there may be some truth to minimizing the modes since a dipole
in a corner would excite few modes – hence its low output. As an interesting
comparison for the dipole consider Fig.8-10. This is the plot for a mid room loca-
tion. 

One can pretty much put a monopole any place without creating a problem,
but we must be careful where we put a dipole. Remember that all rear ported
enclosures act as a dipole below cutoff.

One solution to the roughness problem is to use multiple sources. In general,
the statistics will go as any statistical function when more degrees of freedom are
added, namely 1/n where n is the number of sources. Adding a second source
would be expected to cut the variations in half (on the average) and adding a third
to a third of the results shown. There is much to be gained from the first two or
three sources, but the benefits would diminish quickly. 

The output level definitely rises as we move any of these sources into the cor-
ner. This is a well know phenomena and it is generally acknowledged that the best

Roughness (dB) 
.5  3.2  6.3  6.0  5.2
1.0  3.7  2.9  2.8  3.1
1.5  4.0  5.1  4.9  4.7
2.0  3.4  5.1  4.8  4.4
2.5  2.8  5.6  5.3  4.6
3.0  2.7  5.3  4.9  4.3

Avg.  3.3  5.1  4.8  4.4

Source
 location

 Monopole  Dipole (moment)  Avg.

.1m .2m

Table 8.1:  Response averages and roughness numbers for three sources in six locations
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place to put a “subwoofer” is at a junction of boundaries such as a corner. In this
way, the maximum number of modes will be excited. 

No matter how many modes we excite there are still not enough modes at the
lowest frequencies to provide for a smooth response. As we have pointed out, the
use of significant amounts of damping helps to smooth out these response irreg-
ularities (at the sake of reverberation field level). This presents us with a signifi-
cant problem. In the previous section we discussed the desire for a small room to
minimize the use of damping material and yet we have now concluded that for a
good low frequency response, we want just the opposite. To make matters worse
nearly all of the materials that are typically used in modern room construction are
effective dampeners at higher frequencies but not at all effective at low frequen-
cies. It would appear then that typical room treatments in a small rooms are
exactly the wrong thing to do.

What we want is substantial low frequency absorption with minimal high fre-
quency absorption, but is this possible? In fact, it is. Without going into the
details, it is possible to construct a room such that it has massive walls with hard
surfaces but which are in fact suspended on springs (resilient channel) and inter-
nally damped with constrained layer damping (high-loss viscoelastic material
between two sheets of stiff material). These panels will yield a wall that is flexible
and well damped at low frequencies, yet it is rigid and reflective at higher frequen-
cies. 

We clearly don’t want the kind of construction usually used in auditoriums
with an extremely rigid structure and walls and the proficient use of heavy drap-
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Figure 8-10 -  A monopole source in the middle of the room – a worst case
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ery, absorptive seats and thick carpeting. Large rooms and small rooms simply do
not behave the same and there is no reason to expect that they should have the
same acoustic treatments. Consider the following facts. The damping treatment in
a room is seen by a sound wave each time it impinges on this material. Since the
“mean free path” (the average path length between successive reflections) for a
small room is typically orders of magnitude smaller than that for a large room, any
material used in a small room will become that much more effective than in the
large room. A patch of absorbing material on a wall will be impinged upon by a
sound wave perhaps a thousand times more often in a small room than a large
one. This is easy to see by just considering the volume to area ratio of a small vol-
ume compared to a large one. One could almost say that the use of sound absorb-
ing material in a small room should be kept to an absolute minimum, especially at
higher frequencies.

The take-away point of this chapter is that small rooms behave very differently
than larger rooms. One must question each and every assumption used in the the-
ory of room acoustics as applied to large spaces when using these theories in
small spaces. From what we have seen, the odds are that the assumptions will not
hold up and any theory developed from them must be seriously scrutinized for
applicability to small room acoustics.

8.5 Summary
We have shown how the sound field in a room is hypersensitive to small

changes in the rooms parameters.  This lead us to the conclusion that the room
response must be considered as a random variable. We have tried to show how
different the acoustics are for a small room when compared to a large room. We
have attempted to replace the large room concepts with a small room design goal
of high values of low frequency absorption combined with low values of high fre-
quency absorption (and pointed out that this is usually the opposite of one gets).
When this is done, the need for increased directivity from the sound source
becomes evident.

Finally we have shown that the low frequency source type does make a differ-
ence, but it is a difference that depends on several other factors.  More low fre-
quency sources are better and for higher output, all sources work better in a
corner.


