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T H E  E F F E C T  O F  E N C L O S I N G  A  T R A N S D U C E R

5.1 The Simple Closed Box
In order to understand the effect of an enclosure it is instructive to derive the

simplest form of an enclosure directly from the principles that we have already
learned, namely the Wave Equation. We will then move on to the T-matrix
approach showing the near equivalence of the two. In this way we will learn how to
combine the continuous nature of sound radiation with the more discrete (i.e.
lumped parameter or T-matrix) nature of the enclosure problem.

Consider a spherical enclosure with a piston set in it. We have already learned
how the sound radiates from the outside of this enclosure. Now we want to deter-
mine the effect the inside of the enclosure will have on the transducer. In order to
do this we must once again return to the equations of Secs. 3.4 and 3.5. In those
sections we used Bessel Functions which are appropriate for external sound radia-
tion, namely the Spherical Hankel Functions. We must now consider the solutions
to the Spherical Wave Equation that are appropriate to the interior standing wave
problem.

The appropriate set of functions for the interior problem are known to be the
Spherical Bessel Functions of the first and second kinds

(5.1.1)

jm = the Spherical Bessel Function of the first kind
nm = the Spherical Bessel Function of the second kind

The solution to the problem that we are currently considering, the interior of a
spherical shell, must be analytic (finite) within this shell, which also contains the
origin. Therefore we can exclude the second function since it is singular at the ori-
gin. There are cases, such as a spherical shell with an inner rigid sphere which con-
tains the origin, for which this simplification is not possible. It is wise not to
assume that we can always exclude the singular solution.

The boundary conditions that we have for this problem are

(5.1.2)

The general solution then becomes
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(5.1.3)

which must equal the boundary conditions specified in (Eq.(5.1.2). Proceeding
identically to the examples that we have used before, we will find

(5.1.4)

and by applying the conditions of orthogonality we have

(5.1.5)

and finally

(5.1.6)

In order to calculate the impedance seen by the source we must integrate this
pressure response over the area of the source.

(5.1.7)

Sd = the area of the piston
The division by  is required to yield the acoustical impedance.

Fig.5-1 shows the impedance seen by the source in Acoustical Ohms for a
sphere of volume  with a source of radius ap =7.8 cm. These
dimensions correspond (approximately) to an eight inch loudspeaker in a 25 liter
box.

From the figure we can see that the impedance is actually quite complex at the
higher frequencies, corresponding to the internal box resonances. Below the first
resonance, however, the curve appears to be a simple compliance in series with a
lumped mass. For this example, the acoustic compliance and mass of the interior
impedance are found to be

(5.1.8)

Ca = acoustic compliance,
Ma = acoustic mass. 

Note that at the box “anti-resonance” the box does not even appear to be
present. At the higher frequencies we get into a multiplicity of box resonances
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which could present some problems. We will now add some damping to the walls
to see if we can get rid of the resonances, or at least reduce them.

In the damped case we must have a different boundary condition, namely

(5.1.9)

 = the value of the impedance at the walls.
The value of α is assumed here to be real (absorptive). We could just as easily have
allowed the walls to be flexible, but that is not usually the way enclosures are
made. Using the new form we have

(5.1.10)

From this equation we can conclude that the Eigenfunctions in this space
must be of the form

(5.1.11)

in order to satisfy the boundary conditions.
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Figure 5-1 -  Acoustical impedance of a sphere
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The solution to our problem then is really quite straightforward. In Eq.(5.1.3)
we simply substitute the wave functions used in that equation (  in that case)
with the new wave functions - the functions which satisfy the new boundary con-
ditions.

An example of this calculation is shown in the figure above. We can immedi-
ately see that this result is unrealistic since it appears to completely negate the
enclosed compliance of the air. This problem is caused by the fact that, in reality,
it is impossible to achieve an actual value of wall impedance which is constant
with frequency. The impedance must disappear as the frequency is lowered since
the velocity goes to zero.

A more realistic approach is to use a wall impedance that vanishes at low fre-
quencies and asymptotically approaches its maximum value at high frequencies.
Using this new impedance function we get the curves shown in Fig.5-3. This
result is much more satisfying, but we can improve upon it even more.

We can see that the low frequency fit to an equation form which consists of a
compliance, a mass and a resistance all in series over estimates the compliance at
the low end of the spectrum. This is true because of (or as a result of) the fact that
the impedance disappears in this region. By adjusting the volume with a term
which depends on α’s asymptotic value

 (5.1.12)
we can achieve the results shown in Fig.5-4. The match between the analytical cal-
culation and the lumped parameter form are now quite similar. It is of course well
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Figure 5-2 -  Closed spherical box with inner wall impedance α=.15
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Figure 5-3 -  Fig.5-4 with a more realistic wall impedance
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Figure 5-4 -  Closed sphere with corrected apparent volume
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know that the apparent volume of a box increase with the addition of absorption.
However, the reasons usually given for this effect are that it is due to the differ-
ence between isothermal and adiabatic wave propagation. Note that we have
obtained a comparable result without the need for this explanation. In our analy-
sis, the increase in apparent volume is simply a result of the fact that there is
damping that vanishes at low frequencies. It may well be that the two explanations
are simply semantic and are really one and the same. This different point of view
will not be resolved here since general acoustics (including molecular consider-
ations) is not really the focus of this text. It is sufficient for us to note that either
approach leads to the same result – that the apparent volume increases with
increased damping and that with sufficient damping the impedance presented to
the transducer by the enclosed space is represented quite accurately by a simple
three parameter model.

One more aspect of this problem should be mentioned. There is another way
to approach the evaluation of the damping problem. The other approach is to
assume a continuous (in space) form of damping by letting the wavenumber k be
represented as a complex quantity

(5.1.13)

This approach to damping is called structural damping in mechanics. It occurs
when wave motion in the medium causes energy dissipation, such as would hap-
pen with a distributed material like fiberglass. Note that this form of damping nat-
urally rises with frequency, which we know to be true at low frequencies. In the
above equation however it continues to rise with frequency, which is not always
the case. Air absorption has does have this form, continuously increasing with
frequency throughout the audible range, but starting at a very low value of sound
absorption in the lower frequencies. It is likely that a real enclosure with distrib-
uted damping material could best be fit by both solutions – continuous damping
and wall impedance damping.

The problem, the use of a complex value for k, as suggested above, can be
solved, but it requires that one be able to evaluate Bessel Functions of an imagi-
nary argument. Computer subroutines to do this evaluation are readily available1,
but their usage is beyond the scope of this book. Further, the results would be
nearly the same as what we have already shown. We bring this up now because in
the next section we will once again consider the use of a complex wavenumber.
The functions that we will be using there are, however, much simpler than Bessel
Functions and the values for complex arguments are well know.

1.  See Zhang and Jin, Computation of Special Functions.
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5.2 An Enclosure in  T-matrix Format
We will now take what might appear to be a sideline from our study, however

the discussion does come back around to mesh with the previous section discus-
sion.

Consider the problem of a one dimensional cylinder as shown in the figure
above. It is one dimensional because we will not consider cross modes. We want
to find the T-matrix representation of this element.

From Sec.3.2 we know that the solution to the one dimensional Wave Equa-
tion in Rectangular Coordinates is

(5.2.14)
which represents waves moving in both the positive and negative x directions.
Here φ (x) is the velocity potential function. Applying this form to the two faces
of the duct we have

(5.2.15)

Written in a more convenient form this equation becomes

(5.2.16)

We can apply this equation to both ends of the duct to yield two matrices

(5.2.17)

and

(5.2.18)

 P2
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Figure 5-5 -  One 
dimensional cylinder 
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Note that in this later equation the velocity is in the opposite direction from the
velocity at the other end of the duct, as in the previous equation.

We can now solve for the vector (A B) in both equations and set them equal to
each other

(5.2.19)

which will yield the result that we want

(5.2.20)

L = x2 – x1, the length of the duct
A = the area of the duct 

The area was introduced to convert the particle velocity into the volume velocity,
which is the variable that we will use in the acoustic domain. Eq.(5.2.20) is a con-
venient and simple result. This equation represents the core T-matrix for the
acoustical domain in the T-matrix modeling approach that we use in this text. It
can be adopted to handle nearly every component that we will encounter in the
acoustic domain where free sound radiation is not possible. We will now look at a
few examples of its usefulness and then we will extend its accuracy.

5.3 T-matrix and Lumped Parameter
The T-matrix approach lies between the lumped parameter approach com-

monly used for transducer design and the Wave Equation approach shown in the
first section of this chapter. It is more broadly applicable than lumped parameter,
but more limiting than the Wave Equation. Let’s look at how the lumped parame-
ter forms for acoustic elements are subsets – simplifications – of the T-matrix
approach.

Consider a transducer in the end of a tube of length L, and closed at the other
end. Eq.(5.2.20) becomes, for the acoustic variables presented to the transducer
at point 1,

(5.3.21)

To find the impedance presented to the source we set V2 =0, which represents a
closed end, and then we divide the resulting equation for p1 by the equation for
V1
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(5.3.22)

Fig.5-6 shows the acoustical impedance seen by a transducer in the end of a
closed duct, using the same piston area and volume as the previous example
(Fig.5-1 on page 91). We can see that the comparison is good up to just above

100 Hz, after which the cylindrical enclosure has a much higher density of modes
and there is no apparent rise in the mean impedance level with frequency – the
internal mass effect.

If we look at Eq.(5.3.22) for small kL we find that

(5.3.23)

 Further if we look at Eq.(5.3.21) for small kL we find

(5.3.24)

which is the T-matrix for a capacitor to ground with a value of V /ρ c², the lumped
parameter result.

Thus we have shown that the T-matrix is more broadly applicable than the
lumped parameter model, but we must also remember that it is not always exactly
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Figure 5-6 -  Acoustical impedance load on a transducer in the end of a closed duct
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correct. That is, the matrix form should be expected to be correct for an enclo-
sure with dimensions such that it is a long tube with a cross sectional area equal to
the area of the transducer, which is placed in one end. This is a close approxima-
tion to the common design of a “tower” cabinet with the woofer at the top or the
bottom. We will now see how to make this analysis even more accurate.

If we place damping material at the closed end of the enclosure then we will
have an impedance boundary condition, instead of a zero velocity boundary con-
dition. In this case Eq.(5.3.21) becomes

(5.3.25)

but an easier way to get the same result (calculations show that both methods give
the same results for “typical” cases) is to use the structural damping model shown
in the previous section. In this model we simply let the wavenumber be complex.
The impedance has the same form as that above except that k is now given by
Eq.(5.1.13). Fig.5-7 shows the impedance function for a value of η=.25.

The T-matrix form has the correct characteristics, i.e. similar to the exact
Wave Equation formulation, up until about the first mode in the duct. After this
point the impedance does not have the correct value of mass reactance. This is to
be expected. Since to be exactly correct the driver in our example would have the
same radius as the duct, there would be no divergence of the wavefront (spherical
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Figure 5-7 -  T-matrix impedance with complex k and lumped parameter results

10 100 1,000
Frequency

102

103

104

105

10 100 1,000
Frequency

102

103

104

105



ENC LOS URES -  99

spreading) and hence no acoustic mass – exactly what we have found! The spher-
ical enclosure does have spherical spreading and as such does exhibit an internal
mass effect.

Consider now a duct that is open at the un-driven end. This is a pressure
release boundary condition and we must have (to a first order) p2 =0, resulting in

(5.3.26)

A plot of this impedance is shown in Fig.5-8. This figure indicates that a duct
works as a lumped mass only in the low frequency region. Once standing waves
begin to occur, it is hardly a simple lumped mass.

When kL is small, the T-matrix in Eq.(5.3.21) becomes

(5.3.27)

which for a tube of large length to width ratio is approximately that of a series
mass with a value r L / A, the known lumped parameter result. The results shown
in Eq.(5.3.27) point out an interesting characteristic of ducts. The duct works as
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Figure 5-8 -  Impedance of an open tube load with a radiation impedance
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both a mass and compliance. Only when the load impedance is negligible,
i.e. p2 = 0, does a duct behave like a pure acoustic mass.

We can see that the single T-matrix for a duct can represent all of the lumped
parameter elements that we usually require and it does so with a greater accuracy
than the lumped parameter forms. We should also mention that the wave func-
tions for other coordinates could be used in the derivation of the T-matrix as
shown in Sec. 5.2. For instance, spherical wave functions, which are also quite
simple (see Sec. 3.2) could be used to develop the T-matrix for a tapered rear
enclosure, such as that found in some loudspeaker systems. By using a complex
wavenumber, an accurate equation for this style of enclosure, when stuffed with
damping material, could be calculated. There is, in fact, no limit to the applicabil-
ity of this approach to any of the orthogonal coordinate systems. Yet another rea-
son for our appreciation of them.

5.4 A Ported Enclosure Using T-Matrices .
In order to show how T-matrices can be used for both analytical as well as

numerical analysis, a specific example of a simple rear ducted enclosure will be
shown. The techniques that we will use in this section are applicable to any enclo-
sure design and will be the basis for our later discussions of enclosures. In this
section, we will do a detailed analysis of the sound radiation from a duct ported
enclosure in order to compare the T-matrix approach with the lumped parameter
approach. This problem was chosen since it tends to maximize the differences in
the two derivations. We will then use the T-matrix approach in later sections,
where we will do a “results only” analysis of more complex enclosure types.

In this text the term port means an opening in an enclosure, consistent with
the dictionary definition. A port can have any of several different objects in it, the
simplest being a duct or simple tube.

A convenient way to look at a rear ducted system is as shown in Fig.5-9. This
figure has two tubes, linked together at the rear with a “port” of the same area as
the duct, Ad. The first tube has area Ae, is also of length L and has a transducer of
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Figure 5-9 -  Rear ducted 
enclosure of conventional 

design
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area Sd placed in the end opposite the port. The radiated output is the of the sum
of the volume velocities of Sd and Ad. Enclosures like these are common in the
marketplace.

The T-matrices are linked together just as they appear in the drawing. 

(5.4.28)

The driver matrices are the top row and the enclosure is the bottom row. This
equation contains a new matrix that we have not seen before. It is the diagonal
matrix with Sd in the terms. This matrix represents the change from the mechani-
cal domain into the acoustical domain and has the form of a transformer. The
conversion from the mechanical to acoustical domains is quite simple in this
model, but in general it can get quite complex (a non-rigid cone for instance).

This seems a rather laborious result, and not at all instructive, but we must
keep in mind that Eq.(5.4.28) contains all of the information that can be know
about this system (at least to the order of the model). It is applicable to any situa-
tion; a current source, a voltage source or mixed source conditions and the load
impedances can be any value – a very broad range of applicability. By making a
few simplifications we will see that it readily becomes more manageable.

First consider a voltage source and a negligible acoustical load impedance (the
same approximations assumed by Thiele, Small, etc.). Further assume that kL is
small in all terms and discard the insignificant ones (as we did in the previous sec-
tion). Consider the electrical impedance as only Re.

If we apply these limitations and multiply out the terms we get

(5.4.29)

The transducer parameters used here have all of been converted to acoustical
quantities by multiplying their impedances by Sd².

Using the standard definitions
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(5.4.30)

and rewriting Eq.(5.4.29) we get for the volume velocity of the free end of the
duct

(5.4.31)

which agrees with the lumped parameter analysis.
The results of this equation are shown in Fig.5-10 along with the more accu-

rate T-matrix results (which are too complex to write out). This curve suggests

that there is little difference between the two, although this conclusion would be
in error. It is important to reiterate that what we have derived here is the volume
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velocity of the duct radiation not the complete sound radiation. Also, we have not
yet considered the radiation from the transducer. 

(All of the curves shown in this section have had a small amount of damping
added to the wavenumber to reduce the peak resonance values. This would occur
in a typical enclosure with damping in it and is felt to be realistic.)

5.5 The Mechanical  Acoustical  Interface
In order to calculate the result of a combined loudspeaker and duct radiation

we will have to examine the T-matrix approach in some more detail.
In reality, the loudspeaker is not a simple two-port system. It has a single

input, but it has two outputs, the front and rear of the diaphragm, although it is
important to note that they are not completely independent. The acoustic volume
velocity on each side of the diaphragm is the same, but the pressure is not (the
impedance seen by each side of the diaphragm can be different). The analysis thus
contains a center tapped transformer known as bifilar – both legs have equal and
opposite currents. We can demonstrate this with the following constraint equa-
tions on the mechanical acoustical interface

(5.5.32)

Pf = the pressure on the front of the diaphragm
Pr = the pressure on the rear of the diaphragm
Vf = the volume velocity of the rear
Vr = the volume velocity of the rear
Sd = the diaphragm area

The representation of these equations is

(5.5.33)

which is an over determined set with the variable vd appearing twice. This over-
determination is necessary when one actually goes to calculate values, since it will
be used to eliminate one of the output variables. For example, consider the fol-
lowing case.

When there are arbitrary T-matrices on the front and rear, then we would get
the following situation
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(5.5.34)

Zf = the front composite T-matrix
Zr = the rear composite T-matrix

where the output variables now refer to the system output. This equation is not
the most general form since it assumes no coupling between the front and rear of
the diaphragm internal to the system. We will investigate a modification to this
assumption later. The acoustical T-matrices are linked as sub-matrices of the
more general 4 x 4 matrix. This approach is perfectly correct and accurate, but it
can get to be inefficient in storage and calculation requirements, especially since
there are only a few situations that actually require this full matrix representation.
Multiply out the above form to yield

(5.5.35)

An investigation of this equation reveals that only one of these equations is cou-
pled (front to rear) and then only as a sum (difference) of uncoupled terms. This
means that if there is no direct link from the front of the diaphragm to the rear
then there is no need for the more general 4 x 4 matrix approach. The solution
can be found by considering either velocity equation and taking the force as the
sum of the forces on the front and rear. This reduces the problem to a standard
2 x2 system.

As an example, consider the case where we have a diaphragm that is direct
radiating on the front and has a closed box placed on the rear. The front T-matrix
will be an identity matrix and the rear matrix will be as shown in Eq.(5.3.27). With
Vr = 0. Eq.(5.5.35) then becomes

(5.5.36)

which appears to simply be a restatement of the fundamental relationships shown
in Eq.(5.5.32), except for the bottom equation, which must also be true. We can
use this equation to eliminate Pr in the top equation and then simply drop the last
equation (since we have already used it). Doing this we get
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(5.5.37)

If we add the mechanical matrix for the diaphragm on the left hand side and mul-
tiply both sides by the inverse of the first matrix on the right hand side we will get

(5.5.38)

which can be seen to be the correct result, where the rear enclosure volume sim-
ply adds its mechanical compliance to the drivers compliance.

In summary, by simply calculating the front and rear T-matrices as separate
paths we can combine their effects on the diaphragm by summing them into a
single complex impedance load to the mechanical system. This reduces the acous-
tical domains calculation load by about four times – a significant factor for little
loss in generality and no loss in accuracy. A case where we cannot make this sim-
plification will be shown in the section “Internal Ported” on page 123. 

5.6 Front and Rear Port  Radiation
Returning now to the ducted enclosure we can calculate the load presented to

the rear diaphragm (the only load if we ignore the radiation load, which is negligi-
ble.) We can then calculate the cone velocity and simple multiply by the radiation
area to get the volume velocity. We can then add the two results (actually subtract)
to find the total volume velocity. By making a simple scalar sum of the radiating
volume velocities we have assumed that the duct and loudspeaker are close
together. In the example that we are studying they are close together, but if they
were farther apart then we would have to sum the actual radiated pressure instead
of the near field volume velocity. There are cases where this difference can be
quite significant.

The results of the calculations are shown in Fig.5-11. This figure shows the
loudspeakers radiated pressure and the total radiated pressure for both the
lumped parameter and the T-matrix calculations. There is about a 2 dB difference
up to almost 1kHz. where the differences become very large. The reason for this
discrepancy can be seen in Fig.5-12. This figure shows the lumped parameter
acoustic impedance of the enclosure versus the T-matrix calculation of the same
enclosure. The T-matrix calculation is predicting much smaller impedance values
in the range just above resonance. The T-matrix calculations are more accurate in
this region.
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Figure 5-11 -  Simulated pressure response for lumped parameter and T-matrix calculations
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Figure 5-12 -  Acoustic impedance of the enclosure for lumped parameter and T-matrix
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We will now calculate a simple iteration of the length of the enclosure just to
show the effect. Remember that, in this system, as the duct gets longer the net
enclosure volume also increases at the same time – the duct and the enclosure
have a common length. The results are shown in Fig.5-13 for lengths
of .1m, .12m and .15m. The common length of the two tubes in this system
makes the resonance frequencies in the duct and the enclosure common, which
accounts for the pronounced effect of these higher order modes.

Lastly, consider the fact that the duct radiation is exactly the same radiation
that would occur for a single ported bandpass system (except that the driver
parameters would then be those of the driver in its rear enclosure, not in free
space.) Fig.5-10  then also shows the results of T-matrix versus lumped parameter
calculations for the volume velocity of a bandpass system. The pressure response
would simply be ω times the results shown in that figure. Once again it is clear
that ignoring the modes of the duct and enclosure can result in substantial errors.

To summarize the results of this section, we have found that the T-matrix
approach gives a better approximation and more analytical results than the
lumped parameter approach. This is, however, a double-edged sword. While the
results are more accurate, the added complexity of the T-matrix machinery can
also obscure the more elegant results obtainable by the lumped parameter
approach. With the full T-matrix approach, it is not possible to do tables of
designs, monographs or simplified transfer functions, as is possible with lumped
parameters. If T-matrices are to be used, then we must move away from the con-
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Figure 5-13 -  Iteration of common length of box and duct.
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cept of “alignments”. This leaves a dilemma that can only be resolved by the
needs of the individual engineer.

A final consideration that we will discuss is that as enclosures become more
and more complex the elegance of the lumped parameter approach begins to fail.
This is true, for instance, for a double tuned bandpass system or a system with an
Acoustic Lever™ where even the lumped parameter approaches yield equations
that are too complex to allow for simple reductions to “alignments” or tables.
Thus it seems clear that the domain for the effective use of the lumped parameter
approach is relegated to the simpler systems, like the closed box, or single duct or
passive radiator ported enclosures. As the complexity of the enclosure design
increases, the need for an approach like T-matrices becomes ever more evident.

As regards this treatise, the above discussion makes clear that the classic analy-
sis of loudspeaker enclosures, as is done in so many other texts, is of limited value
to us. For this reason, we will describe enclosure concepts only in general terms
realizing that to cover them in detail would require far more space than we have
the time (or patience) for. Our objective here is to show alternative methods to
the tried and true methods of Thiele and Small and not to review the fundamental
results so well documented by our predecessors.

5.7 General  Enclosure Types2,3

The chart shown above lists the various types of enclosures that we could dis-
cuss. We will touch on them all but we will discuss only a few in any detail. In each
case of a port, it can have one of three varieties of devices placed in it, each with
its own characteristics. These devices are a duct (as in the previous section), a pas-
sive radiator, or an Acoustic Lever™4. 

2.  See Loudspeaker Anthology Vols. 1-4, AES publications
3.  See Beranek, Acoustics
4.  See Geddes, “The Acoustic Lever Enclosure”, JAES
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This chart shows a myriad of possible combinations, more than a dozen, and
these are only the first order systems. It is also possible to connect a port, with
three variations between the front and rear enclosures for another entire set of
combinations. By first order we mean a single enclosure-port combination. It is
possible to link together an infinite number of first order sections (Helmholtz res-
onator), much like an electrical filter, to achieve an infinite number of combina-
tions. We will stick to first order enclosures and only briefly mention those
aspects of higher order devices that tend to make them less than optimal (in most
cases).

We will go down the list, one by one, and discuss the need for further explora-
tion or not. In most cases we will not go into any depth, mostly because the rele-
vant details have already been covered.

Front – Direct, Rear – Direct

This enclosure is the simplest of all enclosures – basically no enclosure at all.
Since the front and rear of the diaphragm are out of phase, this design is a dipole.
The polar patterns that we have discussed before for monopoles (see Fig.4-2 on
page 73) are still appropriate so long as they are multiplied by an additional cos(θ)
factor. This enclosure design is in fact more interesting than it first appears and
can be quite useful. The response is mildly dependent on the size of the baffle for
two reasons. The first is the dipole moment which affects the loading and the sec-
ond is the diffraction of the baffle edge. To calculate the response taking into
account the baffle diffraction can get quite complicated. Neither of these effects
is of first order, however.

A critical point in our analysis is evident in the previous paragraph. We have
referred to cabinet diffraction as a second order effect. Why we have classified it
in this manner is important to understand. The first order effects are those that
are an inherent characteristic of the transducer system. For instance, the effect of
an enclosed volume is inherent with any closed box regardless of its shape. The
diffraction, however is not. The shape of the enclosure is the dominate consider-
ation for the diffraction. We know that minimizing the second derivative of the
surface in which the transducer is placed will minimize the diffraction. So round-
ing the baffle edges will minimize the diffraction. Simply stated, we mean that no
amount of study can reduce the effect of the enclosed volume, but judicious
choice of enclosure shape, such as spherical, can virtually eliminate diffraction
effects. First order effects are those that cannot be eliminated and must be under-
stood in order to accommodate, Diffraction effects can be eliminated or dimin-
ished to a negligible amount.

Returning to the dipole enclosure, in order to minimize the diffraction the dis-
tance from the loudspeaker to the baffle edge should be varied as widely as possi-
ble and, as we said above, the baffle edges should be radiused (normal to the
baffle). A transducer placed in the center of a donut (torroid) should be very
effective at minimizing diffraction. Using these techniques the diffracted field will
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be minimized to the point where it is negligible and can be ignored. In an opti-
mized baffle the dipole has the directivity that we discussed above, but with one
other feature. There is a transition of the summed volume velocity from a 4π
steradian sound field at low frequencies to a 2π steradian sound field at high fre-
quencies. The transition will occur at the point where the average distance from
the front surface to the rear surface is 

                             

The more widely distributed the distances to the baffle edge are the more gradual
this transition will be.

Front – Direct, Rear – Closed

We have already covered this design in some detail.

Front – Direct, Rear – Ported – Duct

This enclosure design has also already been covered using the T-matrix
approach. Our intent, to show how to analyze them, has been served by the previ-
ous sections. It is worth mentioning that this enclosure can also be analyzed
directly using the Wave Equation, just as we did for the closed box. The “port” is
represented by a boundary condition on the opposite side of the sphere by, for
example, a pressure release condition – a hole (a short duct). It is also possible to
place an impedance value in this port representing, say, a passive radiator. It is
unknown if any significant insights would be gained from this exercise. The
reader is invited to try this as an interesting exercise.

Front – Direct, Rear – Ported – Passive Radiator

 To first order, passive radiator systems work identical to ducts. If the acoustic
mass of the passive radiator equals the acoustic mass of the duct and its compli-
ance is negligible, then the two systems are virtually identical. There are several
second order differences, however. The major difference in the two is that a pas-
sive radiator has much less physical velocity than a duct, given the usual situation
of a passive radiator which has an area that is large compared with the area of the
duct. This has several advantages. First, it lowers the loses due to viscosity effects
in the duct and it lowers the generation of noise due to air turbulence. Of course a
duct could be made as large as a passive radiator but then it would need to be very
long, resulting in a total enclosure volume that would be much greater than that
of the passive radiator. The real advantage of a passive radiator is its ability to get
a high acoustic mass with a large cross sectional area in a relatively small space.

On the other hand, ducts are simple, inexpensive and with proper flaring, a
smooth finish and sufficient area they can work quite well. The passive radiator
can have nonlinearity in the suspension that will generate distortion if this suspen-
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sion is too stiff. The audibility of passive radiator distortion has never been stud-
ied so its significance is really unknown.

It is easy to see from the T-matrix of a passive radiator that it is mathematically
identical to a duct. The passive radiator has a T-matrix

(5.7.39)

which simplifies to

(5.7.40)

Spr = the area of the passive radiator,
Mpr = the passive radiators mechanical mass,
Rpr = the passive radiators mechanical resistance,
Cpr = the passive radiators mechanical compliance.

When the compliance term is negligible, which occurs if the passive radiators free
air resonance is substantially below the box tuning frequency, then this form is
identical to Eq.(5.3.27) for the lumped parameter duct. This comparison points
out another major difference between the passive radiator and a duct – freedom
from higher order modes.

Fig.5-14 shows a comparison between a passive radiator (solid) with a high
compliance and one with a low compliance (dotted) (high compliance = ten times
low compliance). A ported enclosure is also shown (dashed). For a sufficiently
high compliance of the passive radiator, its response is indistinguishable from that
of the duct. For a low compliance passive radiator, we do see a significant effect
of the compliance term as a slight detuning of the system. This effect can be com-
pensated for by a slight adjustment of the other parameters of the design. In
essence, except for very small passive radiator compliance, the passive radiator
and the duct work essentially identically. We must remember, of course, that we
have considered the duct, in this case, to act as a lumped parameter port object –
not a distributed pipe.

Front – Direct, Rear – Ported – Acoustic Lever™

We will discuss an Acoustic Lever™ in some detail since it is a relatively
unique object with an interesting array of characteristics. Once we understand
what an Acoustic Lever™ is and how it works. Then we will proceed to some
examples. 

An example of an Acoustic Lever™ is shown in Fig.5-15. The device appears
to be much like a passive radiator, and acts somewhat the same. A lever has three
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physical areas that we need to consider: the driven area Ad, the radiating area Ar
and the inner area, which is always Ar - Ad. Although the inner areas must always
face some volume, it is easiest to understand the lever by ignoring this volume and
considering it as part of the compliance of the lever. Made large enough, its effect
can be made negligible. But it is this inner volume that is, in the end, the limiting
factor to the performance of an Acoustic Lever™.

As a T-matrix the lever is quite simple
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Figure 5-14 -  Passive radiator with high and low compliance
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Ad Figure 5-15 -  An example of 
the construction of an Acoustic 

Lever™



EN CL O SU RES -  113

(5.7.41)

Ml = the levers mechanical mass,
Rl = the levers mechanical resistance, 
Cl = the levers mechanical compliance (combined here with the 

acoustical compliance of the inner volume).
Multiplying out this matrix yields

(5.7.42)

which is similar to the passive radiator matrix – equal to it, in fact – when the
driven area equals the radiating area, as of course, it must be. We can write this
matrix in another form which is perhaps more enlightening

(5.7.43)

which is exactly the same form as a passive radiator of area Ad with a transformer
(electrical analog) placed at the output. A mechanical analog to a transformer is a
lever – hence the name Acoustic Lever™.

It is well known that the power transfer through a transformer is constant. It
neither creates or destroys energy, although a transformer can help to deliver
more power to the load if there is an impedance mismatch between the input side
and the output side, as is the case in enclosures for loudspeakers. To first order,
we can simply think of a lever as a passive radiator, or a port, which amplifies the
output volume velocity by the ratio of the radiating area to the driven area. By
first order, here, we mean that we will ignore the radiation impedance and assume
that the acoustical resistance and compliance of the lever are not significant.
These later aspects can be problematic since the acoustical impedance of the lever
as seen by the system is related to the smaller driven area, Ad, of the device, which
tends to make these quantities larger than their equivalents in a passive radiator.
Also, the acoustic mass, which is the mass that “tunes” the system, is also
increased as the lever ratio increases. This means that in a very real sense, there is
a practical limit to the kinds of gains that one can achieve with a lever. As the area
ratio is increased for increased amplification, the acoustic values of all of the
mechanical impedances for the lever go up. To maintain a constant acoustic mass
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with increasing lever ratios one has to continually decrease the actual mechanical
mass, which soon becomes impractical. This is also true of the resistance and the
compliance. Ratios of 2:1 to about 4:1 are doable, 4:1 being the approximate prac-
tical limit, but even then, the actual construction of a robust 4:1 lever can become
quite difficult. 

When used with a direct radiating transducer, the lever can only be used to
extend the bandwidth, not to increase the output. This is simply because the pass-
band output of any direct radiating system is from the transducer itself. There-
fore, the levers output cannot exceed that of the passband for a flat response.
When tuned low the lever can have a substantial effect on the low frequency
response, as shown in Fig.5-16. This plot shows a rear ported lever (dashed) along

with a rear ported passive radiator (solid). Both systems have a direct radiating
transducer and both systems have the same box tuning. The lever and the passive
radiator also have the same radiating area and the same acoustic mass. With a 2:1
lever ratio, the levers actual weight must be half as much as the passive radiator. 

The response of the rear ported lever is quite good, but we must keep in mind
that we have ignored the compliance of the lever's inner enclosure. Fig.5-17
shows the detrimental effect of reducing the lever compliance (smaller inner
enclosure) and we can see that the net response is highly dependent on the com-
pliance of the lever. As usual larger is better for low end performance.
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Figure 5-16 -  Rear lever with direct radiator
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Front – Ported, Rear – Direct

This is the same system as a Front– Direct, Rear–Ported system, in all cases.

Front – Ported – Duct, Rear – Closed

This enclosure design is probably third in common usage for low frequencies,
following the closed box and rear ported designs. Its design is actually very
straightforward. By tuning a Helmholtz resonator placed over the radiating trans-
ducer the efficiency of the system can be increased at the expense of bandwidth.
This effect works essentially the same for any of the port elements: a lever, pas-
sive radiator or a duct. The increase in efficiency essentially comes from the
higher impedance seen by the transducer in the region of the resonance of the
front enclosure resonator. In the case of the Acoustic Lever™, the volume veloc-
ity is enhanced even further by the lever ratio.

Fig.5-18 shows a comparison of a ported system with three different elements
in the port, a ducted, a passive radiator, and a 2:1 ratio lever. In each case, the
front volume is tuned to the same frequency as the transducer when placed in its
rear volume.

The basic characteristics of a front ported system are easily defined (to first
order):
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Figure 5-17 -  Effect of lever compliance on response
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• The system is symmetric with its center frequency at the transducer's
resonance (as enclosed in its rear box).

• The systems all require the same front volume and port acoustical
mass for the same system Q.

• The duct and passive radiator yield virtually identical responses.
• The lever has an output that is increased in direct proportion to the

lever ratio.
• Flat response occurs when the Vfront = Qtotal Vrear where Qtotal is the

Q of the transducer in its rear volume.
• The bandwidth times efficiency is relatively constant (not mathemati-

cally in linear variables, but in a log-log sense).
The second order effects which have been ignored in the above analysis are sim-
ply the radiation load on the port objects and the internal resistances of the port
objects. The effect of the lever's inner volume has also not been explicitly shown
and it should be remembered that it does result in quite a substantial limitation of
the output if allowed to shrink.

When the higher order effects are considered, the passive radiator tends to
show a greater change in response from these parameters than the duct. The radi-
ation load detunes the system to a slight degree, requiring a minor compensation
with other component values. The system response can be greatly affected by the
passive radiator's compliance and resistance if these values fall far from the opti-
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Figure 5-18 -  Front ported, rear closed, enclosure with various port options
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mum. While neither of them can be eliminated altogether, they can usually be
made to be insignificant.

The lever always has the greatest output, but when consideration is given to
the compliance of the air between the lever surfaces it tends to result in a slightly
larger system. The lever enclosure is always the limiting factor in using a lever and
its effect is diminished only by increasing the “apparent” volume of this enclo-
sure. It can be reduced in size with the use of a large amount of damping (com-
pletely stuffed in creasing the apparent volume), and further, experience has
shown that small holes (for high damping) can be used to further reduce this vol-
ume without a substantial reduction in output from sound cancellation. The
sound radiation from the holes is generally out of phase relative to the radiated
pressure so the radiated pressure from the holes tends to reduce the total radiated
sound pressure. Moving this “leakage” radiation as far away from the direct radi-
ating lever as possible reduces this cancellation and in some applications (like
automotive package tray subwoofer), this detrimental sound radiation can even be
placed in non-coupling volume spaces (like the trunk). There are numerous ways
to control the unwanted volume of the lever enclosure, and it is always best to
consider the specifics of the application in doing this.

The radiation load tends to detune the Acoustic Lever™ system even more so
than the passive radiator, i.e. the detuning is also magnified by the lever ratio.

Once the driver and rear volume are chosen the only variable is the Q of the
front enclosure. This variable Q results from the fact that there are an infinite
number of combinations of port and volume parameters that define a common
resonance frequency. Each of these combinations will have a different Q and a
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Figure 5-19 -  Front duct chamber Q variation
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different response curve. This effect is shown in Fig.5-19 for a front ducted sys-
tem. To first order all that is required for the design of a front ported system with
a closed rear enclosure are a few simple rules, although detailed designs require
either a simulation program or real world testing and tuning.

Front – Ported, Rear – Ported

In this section, we will investigate one of the more complex enclosure styles,
namely a port on the front and the rear of the transducer enclosures. 

With the possibility of three different port elements there are six unique com-
binations:

• duct and duct
• duct and passive radiator
• duct and lever
• passive radiator and passive radiator
• passive radiator and lever
• lever and lever

As we have already discussed, to a first order a duct and a passive radiator act
the same. If we consider a duct and passive radiator to be synonymous, then there
are only three unique combinations, and for all practical purposes only a dual pas-
sive radiator system really needs to be discussed.

Consider a transducer with two identical resonators on the front and rear dia-
phragm faces. The net radiation from these two resonators will be virtually zero
except for the fact that the two ducts cannot occupy the same exact location and
so there will always be some radiation depending on the dipole moment between
the two exit ducts.

If now we slightly change the resonance frequencies of the two chamber then
there will be a region between the two resonances that will have sound radiation
which is clearly not zero since the phase shifts that result from the resonances will
not allow for a complete cancellation of the radiation. Fig.5-20 shows the imped-
ance seen by the diaphragm as the two chambers are tuned apart. Note how with
even a slight detuning of the system this impedance goes immediately from a very
high resonance value to a very low anti-resonance value at the mid point.

Thus by slightly retuning an equal ported situation we should expect a rather
large change in the effect of these two enclosures. This is in fact what happens,
which can be seen in Fig.5-21. Here we have a standard transducer in a box with
two passive radiators on each end of a tube with a driver in a middle divider. The
location of the divider is moved, changing the tuning of each resonator. The pas-
sive radiators are identical, which is not the correct relationship for a flat
response. This figure demonstrates that as the tuning gets closer and closer to
being equal the response falls. However, it is also apparent that the efficiency does
reach a peak after which the volume shift simply extends the bandwidth. This
occurs because the two ported enclosures are no longer tuned close enough
together to act on each other. They become uncoupled. The response has
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Figure 5-20 -  Acoustical impedance on diaphragm from a dual ported system
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Figure 5-21 -  Dual ported enclosure with movable interior baffle 
(note that the total volume is constant)
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become equivalent to a single ported system with an acoustic low pass filter on
the other side of the diaphragm. Lets consider changing the tuning by adjusting
the masses of the passive radiators instead of leaving the total volume constant
and varying the ratio, as we just demonstrated.

Using equal volumes whose sum is the same as in the previous plot, and vary-
ing the tuning masses we obtain Fig.5-22. In this figure the product of the front

and rear passive radiator masses has been made constant while varying the tuning.
The volumes of the two chambers remain equal in all cases. Comparing Fig.5-21
and Fig.5-22 we can see that we basically tune the system with the masses while
the volume ratio sets the bandwidth. Equal volumes yield the smallest bandwidth
with the highest output. 

Since the volumes and the masses both affect the response, it would be inter-
esting to see the effect of retuning with different masses and volumes but with a
constant set of tuning frequencies. This study is shown in Fig.5-23. This set of
parameter changes basically modifies the gain of the response. The middle curves
in the last two figures are identical systems.

The low frequency response of the lower curve in Fig.5-23 has some strange
response irregularities. These are a result of the complex relative phase changes
occurring at the lower resonance of the passive radiator subsystems. These irregu-
larities are sensitive to response tuning and passive radiator parameters. They
almost always stay well below the usable passband of the system.
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Figure 5-22 -  Dual ported enclosure with tuning changes as passive radiator mass changes
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Tuning the dual bandpass system can be put into a few simple principles:
• The total volume sets the location of the center of the passband.
• The volume ratio sets the bandwidth.
• The masses of the ports tune the system for flat response.
• The ratio of the mass to compliance of the enclosures sets the gain.
• The transducer parameters of mass and compliance do not affect the

problem to any appreciable degree, which is especially true for a high
compliance unit with not too heavy of a cone.

• The system damping is almost completely controlled by the drivers’
electromagnetic damping, making it the only important driver param-
eter for this type of system

In practice, these enclosures need a computer simulation to optimize, but in
principle, they are not too difficult to design. Once again, the design (to a first
order) is the same whether or not the ports are ducts, passive radiators (or as we
shall see Acoustic Levers™). The details will differ between these different types
of ports. However, the basic principles of tuning remain the same.

Now we must look at how the lever affects this more complex design. We will
look at the same enclosure as in the previous graphs but with the passive radiators
replaced with 2:1 levers of the same radiating area. The driver will also be the
same. This will allow comparisons even though the absolute values here really
have no meaning. It is the relative values that are significant.
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Figure 5-23 -  Retuning with constant tuning frequencies
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Fig.5-24 shows that the response tuning of the lever system is identical to that
for a passive radiator. Of course, the actual mechanical lever masses will not be
the same since here we have set the acoustical masses the same. The mechanical
mass will be about half of that for the passive radiator. We have also ignored the
lever enclosure when we talk about total volume. It is assumed to be large. Other
than the lever enclosure (the volume between the lever surfaces), the lever works
exactly like a passive radiator except it has a system gain which is proportional to
the lever ratio.

The only remaining combination of dual ports that we have not discussed is a
combination of a lever and a duct or passive radiator. There is no simple answer
here as Fig.5-25 shows. This figure has one of the levers replaced by a passive
radiator. All of the other parameters remain identical to the previous figures,
except for the passive radiators area, which has been set equal to the inner
(smaller) area of the lever.

While it is difficult to draw any substantial conclusions, the following can be
noted for lever/non-lever dual ported enclosures:

• Replacing the low tuned lever does not make much difference imply-
ing that the use of two levers is unnecessary.

• Replacing the high tuned lever with a non-lever appears to loose all
benefit. In the case of a large passive radiator area, the system would
require substantial retuning to be useful.
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Figure 5-24 -  Pressure response for a dual lever ported enclosure
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Internal Ported

The last variation that we will describe is the internal ported system. This sys-
tem is one in which the acoustic matrices cannot be reduced from the full form
shown in Sec.5.5 on page 103. That is because of the coupling between the front
and rear of the diaphragm. Eq.(5.5.34) needs to be modified as follows.

(5.7.44)

Zc = the coupling matrix between the front and the rear of the dia-
phragm

Figure 5-25 -  Lever replaced with passive radiator of equal acoustic mass 
(Note scale change)
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Eq.(5.7.44) has several assumptions built into it. The first is that the coupling
matrix is symmetric with a determinate of one. This is always the case for a duct,
but it is not true in general. The general case is too complex to consider here. We
will look at the case of a single ported enclosure with a duct between the front
and rear boxes. Eq.(5.7.44) then simplifies to

(5.7.45)

Cabf = front box acoustic compliance
Cabr = rear box acoustic compliance
Maf = front duct acoustic mass
L = length of internal duct
A = area of internal duct

In the low frequency regime this simplifies to

(5.7.46)

Cad = the acoustic compliance of the internal duct
Mad = the acoustic mass of the internal duct
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Following the exactly the same procedure as before we can eliminate Pr by
using the third equation in the two above. Then noting that terms in Pf are negli-
gible (why?) we finally get

(5.7.47)

which is an attractively simple result. It is now a simple matter to multiply the left
side by the electromechanical terms representing the transducer from which we
could solve for the output ports volume velocity for either a voltage source, a cur-
rent source or and combination thereof. This example was shown simply to
develop the technique but its results are not interesting enough to warrant further
development here. This task is left to the reader.

5.8 Summary
We have shown in this chapter how the T-matrix approach can be used to

develop the solution to virtually any enclosure problem no matter how complex.
These results can be simplified to yield the classical lumped parameter results or
they can be numerically calculated for a level of detail that is unavailable with
lumped parameter techniques. Of the numerous enclosure variations that we have
looked at, no one stands out as being ideal, they all have trade-offs. For an uncon-
strained design for maximum output however, the Acoustic Lever™ is the clear
choice.
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