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R A D I A T I O N

S O U N D  R A D I A T I O N  F R O M  P L A N A R  B A F F L E S

One of the more important and useful areas of investigation is to examine the
theory behind sound radiation from sources in a plane. This type of source most
closely approximates the radiation mechanism for loudspeakers, namely, flat baffle
boxes. To a first order, a loudspeaker in a box is like a loudspeaker in an infinite
baffle. This is true so long as the baffle on which the device is mounted is more
than about two or three times the area of the driver. For smaller baffles, the situa-
tion is more like sound radiation from a cap in a sphere because the box edges are
so close to the sound radiator. Diffraction effects at the box edges account are a
factor and we will discuss these in later chapters. In this chapter we will develop
the general theory that we will use in the analysis that we will pursue in later chap-
ters.

4.1 Circular Disk
The usual approach to determining the sound radiation from a portion of a

plane is to use the Rayleigh integral

(4.1.1)

S = the surface which contains the source 
g(r|r0) = the Green’s Function for an infinite plane 
v0 = the velocity of the disk

The Green’s Function in this case is simply twice the free space Green’s Function
that we introduced in the last chapter (a result of the perfectly reflecting plane)

(4.1.2)

Curiously (or not), this is also the zero order Spherical Hankel Function. We shall
see later that the Green’s Function for polar geometries is, similarly, the zero order
Hankel Function.
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As an example of the above procedure, consider the circular source shown
above. Using Eq.(4.1.2) in Eq.(4.1.1) and noting that the only contribution to the
integral comes from a circular region of the plane, we get

(4.1.3)

If the disk is a rigid piston, then v0 is a constant and Eq.(4.1.3) becomes

(4.1.4)

V0 = the volume velocity (velocity times area) of the source
This result is a well known and the most widely used model for loudspeaker radi-
ation. Unfortunately, it is hardly ever applicable. Fig.4-2 shows the polar response
map for a rigid piston as a function of ka.

Most transducers do not have radiating surfaces which are rigid pistons and so
it would be convenient to generalize the approach shown above to consider non-
rigid piston behavior. A convenient choice of modal description for the velocity
distribution is given by

(4.1.5)

where  are solutions of the equation

and are given in Table 4.1, “Eigenvalues for circular disk,” on page 74 and Fig.4-3
shows several of the radial modes (m =0) as defined by the above equations

Inserting Eq.(4.1.5) into Eq.(4.1.3) and rewriting the equation yields
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Figure 4-2 -   Polar response map for a rigid piston
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(4.1.6)
where we have added a cos( mϕ) term since axi-symmetry is not assumed here (as
it was in the earlier equations). The approximation is required since the field point
must be many wavelengths from the source, i.e. this equation is not valid in the
near field. While this equation can be used directly in the form shown above, it is
impractical and unnecessary.

Considering first the equation for ϕ we have

(4.1.7)

Eq.(4.1.6) then becomes

(4.1.8)

Using know relationships for the Bessel Functions and some significant offline
algebra, we can reduce Eq.(4.1.8) to

(4.1.9)

(4.1.10)

S0 = the area of the disk

This is an important result for it shows that there are sound radiation modes
for a circular planar baffled source just as there are for spherical and cylindrical
baffled sources. Each vibration mode has its own characteristic radiation mode.
This means that the sound radiation field can be decomposed into its “modal”
response just as a membrane can. We will use this characteristic to significant
advantage in Chap.12.

n=0 1 2 3 4 5 6

m=0 0.0 3.8327 7.0152 10.1734 13.3238 16.4706 19.6158
1 1.8413 5.3313 8.5263 11.7059 14.8635
2 3.0543 6.7060 9.9695 13.1705 16.3476

Table 4.1: Eigenvalues for circular disk
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The result shown here is not the most general case. The modal pattern of the
source being analyzed must be describable by a cosine function, which is almost
always the case when one can choose the location of the angular origin. In the
completely general case, one simply has to add to the above formulation terms
with a sin(θ ) variation. The analysis is identical and the results completely pre-
dictable, so they will not be discussed.

One last step needs to be shown. The coefficients Amn need to be been deter-
mined. From Eq.(4.1.5), and the power of orthogonality, these coefficients can be
readily determined to be

(4.1.11)

4.2 Examples  of  Circular Aperture Radiat ion
The above result can be greatly simplified for the case where the source is axi-

symmetric but still not a rigid piston – by far the most common situation. In this
case there is no ϕ variation and the integer m must be zero, which reduces the
results to

(4.2.12)

This form can be seen to reduce to the polar term found in Eq.(4.1.4) for a rigid
piston. These functions, shown in Fig.4-4, have some interesting features. Note
that for each modal function there is some value of s = ka sin(θ) for which this
mode is the only contributor. For example, at s = 3.83 the only mode which con-
tributes to the response is the n =1 mode. All other modes are zero. This means
that for a source of radius .2 m operating at 2 kHz the pressure response at

,
results from the modal contribution of only the first mode. Note also that below
about ka =2, only the average velocity across the disk, i.e. the zero order mode,
contributes to the response. This is why it is impossible to control the polar radi-
ation response of a baffled source at low frequencies, there is only a single degree
of freedom.

As a further example of the usefulness of the modal approach to source radia-
tion, consider the radiation response of a spherical wavefront impinging on a cir-
cular aperture. In analyzing the sound radiation from the mouth of a waveguide,
we can use this approach as a good approximation to the velocity distribution in
the mouth aperture if the waveguide is terminated in a flat baffle. (Many research-
ers have used a piston model for this problem, which, as we shall see, is highly
erroneous.) 
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Consider the drawing shown in Fig.4-5. We will use this model to calculate the
modal representation of a spherical wavefront in an aperture. First, the problem is
axi-symmetric so m = 0. The normal velocity v(σ) within the aperture will vary
with σ as r(σ ) according to

(4.2.13)

The magnitude and phase for the normal velocity at values of ka =1 and ka = 3
are shown in Fig.4-6. Note that the magnitude is independent of frequency but
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Figure 4-4 -   Radiation modal functions of order n - circular case
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Figure 4-7 -  The polar response map for a spherical wavefront
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the phase is not. There is more phase shift at higher frequencies meaning that
there is more of an effect on the polar response due to the spherical spreading of
the wavefront. 

The modal velocities can be calculated as

(4.2.14)

The polar response map of a spherical wave in the aperture is shown in Fig.4-7.
When compared with the polar response of a plane wave (Fig.4-2 on page 73) in
the same aperture it is clear that the directivity of a spherical wavefront is signifi-
cantly different from that of a plane wave. Only at low frequencies (ka <4) is the
plane wave even remotely an accurate approximation to the spherical one.

4.3 The Rectangular Aperture As a Transform Pair
The next problem that we shall take up is that of a rectangular aperture as

shown in Fig.4-8. The best way to describe the polar radiation for a rectangle is
with two polar angles which we will call θx and θy. The rectangle will have dimen-
sions 2a by 2b. The far field radiation for this geometry is a simple extension of
that which we have already been discussing

(4.3.15)
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We can at once recognize the double integral as a two-dimensional Fourier
Transform in k-space. This result is quite interesting because it leads to several
further observations. The first is that if the far field polar pattern is a Fourier
Transform of the velocity profile in the plane then it must be that the inverse
Fourier Transform of the far field polar pattern must then be the velocity distri-
bution in the plane of the aperture. This concept is similar to the widely known
theory of Nearfield Acoustic Holography (NAH) wherein one maps from the
nearfield pressure response back to the velocity distribution in the plane or to the
far field radiation pattern. The fundamental difference is that with NAH one also
considers the so-called near field evanescent waves which do not propagate to the
far field. This adds a significant complexity to the calculations but does allow for
a greater resolution of the velocity distribution of the source.

Based on what we have learned thus far we should realize that we could actu-
ally draw a desired polar map and take the inverse transform to find the velocity
distribution that would achieve that response. There is no guarantee that this dis-
tribution is either finite or realizable, however, which is another subject altogether.
We will see an example of how we might get around this limitation in Chap.6.

Another aspect of this transform
relationship is that all of the proper-
ties of the Fourier Transform that we
know (and love) are applicable. For
instance if a complex source can be
broken down into a convolution of
simple sources then the polar pattern
is simply the product of the polar pat-
terns for the individual sources. For
example, consider two square identi-
cal pistons spaced apart by a constant
d along the x axis as shown in Fig.4-9.
The resulting polar pattern would
simply be the product of the polar
pattern of a bipole (two in phase
point sources separated by a small
displacement), cos( kd sin θx ), and the
polar pattern of a single square piston
(which we will derive shortly). This
generalized transform result is also
known as the First Theorem of Sound Radiation. Whenever one of the sources being
convolved is a point source then the convolution is particularly simple to per-
form. However, the power of this technique is applicable to much more compli-
cated relationships.

Another aspect of the transform relationship between source velocity and
sound radiation involves the multiplication of the velocity profile by some useful
function. For example, we will want to know the effect of smoothing the velocity

2

rθy

d

y

θx

Figure 4-9 -  Geometry for dual source 
example
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function, such as when the mouth of a waveguide is flared into the baffle (as
opposed to a discontinuous termination wherein the velocity profile drops
abruptly to zero). This effect can be approximated by multiplying (or convolving)
the velocity function at a discontinuous mouth by a Gaussian function e-ax²

where a sets the width of the curve – basically the inverse of the width of the
aperture. The reason that the Gaussian function is so convenient is that its Fou-
rier Transform is also a Gaussian function. The polar response then becomes the
convolution (or multiplication) of the abruptly terminated mouth response with a
Gaussian function. The result acts to smooth the spatial ripples in the polar
response, which resulted from the diffraction of the wavefront at the discontinu-
ous mouth. There is no end to the interesting features that one can glean from the
transform relationship between the velocity and the far field response.

Lastly, we could easily just ignore one of the spatial dimensions in which case
we would have the polar pattern for a planar baffled line source with elements
whose width is much less than the length of the line. All of the properties
described above would hold including the fact that the shading (variable drive
voltages for the elements in the line) is simply the inverse transform of the desired
vertical polar pattern. 

4.4 General ized Rectangular Radiat ion
We will now solve the problem of radiation from a rectangular aperture in the

general case. The velocity profile is first expanded as a two dimensional function

(4.4.16)

Not all rectangular velocity profiles can be represented by this equation but for
the most part any profile that we are likely to come across can be so represented
or certainly approximately so.

Inserting Eq.(4.4.16) into Eq.(4.3.15) we get

(4.4.17)

where

(4.4.18)

Note that G0 is a Sinc function.
Of course the coefficients An and Bm have to be determined, but by now that

should be obvious
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(4.4.19)

As we said before, we have assumed that the velocity profile can be decomposed
into a product of separate profiles in x and y. 

We should take a few lines to talk about the functions Gm(θ ). Fig.4-10 shows
a plot of the first five values of m as a function of x = k a sinθ . The similarity of
these functions to the functions of Sec.4.2 (see Fig.4-4 on page.76) is striking,
although we should have anticipated this since there is very little difference
between the two derivations. The fact that the functions, all except one, cross the
zero point at the same point is an important feature which is identical between
these functions and those in the previous section. The characteristics described
therein would thus be the same.

Fig.4-11 shows a polar map of the zero order mode (top) and the first order
mode (bottom). These maps bear a strong resemblance to those for a circular
aperture.
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Figure 4-11 -  Polar response for Rectangular polar modes, 
n=0 (top), n=1 (bottom)
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4.5 Transform Relat ionships for Circular Apertures
By now we should expect that the circular aperture will also have a transform

relationship. This transform is called the modified finite Hankel Transform. (“modified
finite” because it is applied to an orthogonal set of finite Bessel Functions of the
form shown in Fig.4-4). This set and the expansion of a circular aperture consti-
tutes what is called a Fourier–Bessel series. 

The Hankel Transform pair are

(4.5.20)

Among the elegance of these equations is the fact that the forward and inverse
transforms are identical. Special properties of the Hankel Transform, for the n=0,
case are shown in Table 4.2. For our problems α = k a sinθ . The first three pairs
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are fundamental properties and the second three are more specific, but interesting
examples. Property 3 is in fact the convolution integral form of the Hankel Trans-
form – a circular convolution. It can be quite useful, as we shall see. Property 2
could be quite useful.

As an example, consider a waveguide constructed as an annular ring source
with an annular horn. Sources like this have been available in the marketplace. We
can approximate this configuration as a source with an outer radius a and an inner
radius b (property 2 used twice), which are circularly convolved (property 3) with
a Gaussian (property 6) to approximate the spherical spreading. 

(4.5.21)

The function V(σ ) is shown in the figure below.

From the above table we can see immediately that the radiation pattern is sim-
ply the difference in two sources of radius a and b multiplied by the polar pattern
for a Gaussian

(4.5.22)

The variable c is chosen to fit the velocity distribution to the aperture. In our
example we will use a=.012, b=.03 and c=300. The polar map for this velocity
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distribution is shown in Fig.4-13. Clearly the transform method offers a simple
technique for calculating the polar response for this type of source.

4.6 Non-planar Sources  in a  Flat  baff le
We will now investigate the problem of a non-planar source located behind

the baffle. We have the tools to find the radiation response from any velocity dis-
tribution in the plane of the baffle, but a source which is not coincident with the
baffle (i.e. a flat piston) will not have a velocity distribution in the aperture which
is flat. If we use the three dimensional Green’s Function

(4.6.23)

where R is shown in Fig.4-14. The source element dx dθ has θ as its angular loca-
tion, which is not evident is the cross sectional drawing. A study of this figure
shows that

(4.6.24)
We can now determine the velocity distribution v(σ) in the baffle plane from

Figure 4-13 -   Polar response map for an shaded annular ring
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(4.6.25)

v0(x,θ )= normal velocity at each point on cone.
We should note that this approach is only approximately correct. The exact
approach1 considers the actual impedance in the baffle plane and the acoustical
resonances which occur in the cavity. These later effects can be significant, but are
not accounted for in Eq.(4.6.25). None the less, this equation does give us an
indication of the effect that a cavity has on the directivity response function with
far less calculation than the exact result requires. From Porter, we know that there
is a slight rise in the response due to a cavity resonance of very low Q at a ka value
which depends on the cavity volume. It is about 3dB at ka =1.8 for a small cavity
(like that shown in Fig.4-14) and about 6dB at ka =2 for a larger volume. At ka
value above about 4, there are severe dips in the response due to standing waves
across the aperture that have a zero net velocity. These later effects cannot be
accounted for with the method shown here, but the former effect can be simu-
lated with a small gain added to the zeroth order radiation mode. This correction
is not used here.

Fig.4-15 shows the velocity distribution in the plane of the aperture for
ka =1, 3 and 5. The velocity tends to focus at the center of the aperture, an effect
which is consistent with Porter.

These velocity distributions can be decomposed into their modal contribu-
tions from Eq.(4.1.11) with m =0

1. See Porter, et.al. “A Boundary Element Approach”, JAES
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(4.6.26)

where the Bessel Functions are defined on page 73. The An’s calculated from this
equation are shown in Fig.4-16. The zero mode, the average velocity, is seen to
fall off with ka as the aperture velocity becomes more non-planar. The higher
order modes above the third can be seen to be negligent, but the first and second
mode rise, which will tend to broaden the directivity pattern. The polar response
map for a concave cone is shown in the top half of Fig.4-17. The bottom half of
this figure is the flat piston source. The cone does not have a significantly wider
directivity although the depth of the off axis null has been modified greatly.

4.7 Summary
This chapter has shown how one can analyze the polar response pattern from

virtually any source in a baffle. We have ignored the effect of a finite baffle, since
it is our belief that one should minimize the diffraction from baffle edges, thus
making their effect negligible. We will discuss this more in later chapters. Impor-
tant applications to the sound radiation problem, a spherical wavefront and a con-
cave source were shown to be tractable with our techniques.

Figure 4-15 -  Velocity distribution in the plane of the aperture
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Figure 4-16 -   Modal velocity contributions

Figure 4-17 -  Polar response map for concave cone (top) and flat piston 
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